Unet提出的初衷是为了解决医学图像分割的问题。 Unet网络非常的简单,前半部分就是特征提取,后半部分是上采样。在一些文献中把这种结构叫做编码器-解码器结构,由于网络的整体结构是一个大些的英文字母U,所以叫做U-net。其实可以将图像->高语义feature map的过程看成编码器,高语义->像素级别的分类score map的过程看...
Unet网络非常的简单,前半部分就是特征提取,后半部分是上采样。在一些文献中把这种结构叫做编码器-解码器结构,由于网络的整体结构是一个大些的英文字母U,所以叫做U-net。 网络结构如下图: Encoder:左半部分,由两个3x3的卷积层(RELU)再加上一个2x2的maxpooling层组成一个下采样的模块(后面代码可以看出); Decoder...
这个综合长连接和短连接的架构就是UNet++。 UNet++的优势是可以抓取不同层次的特征,将它们通过特征叠加的方式整合,加入更浅的U-Net结构,使得融合时的特征图尺度差异更小。 UNet++同时也引进了很多参数,占用内存也变大。
Unet3+的全尺度深度监督与UNet++中的深度监督不同之处在于监督的位置不同,前者监督的是网络解码器每个阶段输出的特征图,后者监督的是网络第一层中的四张特征图(其中三张为跳跃连接中卷积块的输出特征图,一张为解码器最后输出的特征图)。此外,在UNet3+中,为了实现深度监督,每个解码器阶段的最后一层被送入...