摘要:最近,深度学习基础上的语义分割在医学图像分割中广受关注。UNet是一种使用编码器-解码器架构的深度学习网络,广泛应用于医学图像分割。结合多尺度特征是准确分割的重要因素。UNet++作为UNet的改进版,通过…
无论是普通的连接U-Net还是密集连接的U-Net ++都缺乏从全尺度探索足够信息的能力,因此不能明确地得知器官的位置和边界。U-Net 3+ 中的每个解码器层都融合了来自编码器的较小和相同尺度的特征图以及来自解码器的较大尺度的特征图,它们捕获了全尺度下的细粒度语义和粗粒度语义。全尺度跳跃连接示例 为了构建 ...
为了弥补UNet和UNet++的缺陷,UNet 3+中的每一个解码器层都融合了来自编码器中的小尺度和同尺度的特征图,以及来自解码器的大尺度的特征图,这些特征图捕获了全尺度下的细粒度语义和粗粒度语义。 例如,图2说明了如何构造X_{De}^{3}特征图。与UNet类似,直接接收来自相同尺度编码器层的特征图X_{En}^{3}。但...
UNet3+引入了全尺度跳跃连接,使得每个解码器层都能融合来自编码器的不同尺度的特征图。这些特征图包含了不同粒度的信息,有助于模型更好地理解图像的详细和全局信息。2️⃣ 深度监督: UNet3+中的深度监督机制与UNet++不同,它在每个解码阶段的末端应用,确保了每一层都能产生有效的分割结果。这有助于改进模型...
UNet 3+: A Full-SCALE CONNECTED UNET FOR MEDICAL IMAGE SEGMENTATION 在医学图像分割领域,基于深度学习的语义分割技术引起了广泛关注。UNet是一种采用编码-解码结构的深度学习网络,广泛应用于医学图像分割。UNet++在UNet的基础上进行了改进,通过设计具有嵌套和密集跳过连接的体系结构以减少编码器和解码...
UNet3+全尺寸深监督是每个解码器对应一个侧输出(side output),通过ground truth进行监督。为了实现深度监控,每个解码器的最后一层被送入一个普通的3 × 3卷积层,然后是一个双线性上采样和一个sigmoid函数。 此处进行双线性上采样的目的我认为主要有两个: ...
本例简要介绍如何使用UNet3+模型实现遥感影像分割。UNet3+模型包含下采样(编码器,特征提取)和上采样(解码器,分辨率还原)两个阶段,因模型结构比较像U型而得名。 导入模块 Attention:本项目的图片数据集较大,建议选择 配置不小于18GB显存的GPU环境 进行模型训练!In...
Unet3+的全尺度深度监督与UNet++中的深度监督不同之处在于监督的位置不同,前者监督的是网络解码器每个阶段输出的特征图,后者监督的是网络第一层中的四张特征图(其中三张为跳跃连接中卷积块的输出特征图,一张为解码器最后输出的特征图)。此外,在UNet3+中,为了实现深度监督,每个解码器阶段的最后一层被送入...
为了弥补UNet和UNet++不能精确分割图像中器官的位置和边界,UNet3+中每一个解码器都结合了全部编码器的特征,这些不同尺度的特征能够获取细粒度的细节和粗粒度的语义。UNet 3+中的每一个解码器层都融合了来自编码器中的小尺度和同尺度的特征图,以及来自解码器的大尺度的特征图,这些特征图捕获了全尺度下的细粒度语...
UNet3+改进了网络编码器与解码器连接及解码器内部连接。通过提出的混合损失函数,对各层进行深度监督和分类分支指导分割,提高了分割精度。主要贡献有全尺度跳过连接、全尺度深度监督和分类指导模块。全尺度跳过连接包括编码器到解码器的连接与不同层级编码器之间的连接。信息来源于较浅编码器、较深解码器,...