受Mamba架构的启发,该架构以其在处理长序列和全局上下文信息方面的专业性而闻名,并且作为状态空间模型(SSM),我们提出了Mamba-UNet,这是一种新颖的架构,它将UNet在医学图像分割中的能力与Mamba的能力相结合。Mamba-UNet采用了基于纯视觉Mamba(VMamba)的编码器-解码器结构,并注入了跳跃连接以保留网络不同尺度上的空间...
受Mamba架构的启发,该架构以其在处理长序列和全局上下文信息方面的专业性而闻名,并且作为状态空间模型(SSM),我们提出了Mamba-UNet,这是一种新颖的架构,它将UNet在医学图像分割中的能力与Mamba的能力相结合。Mamba-UNet采用了基于纯视觉Mamba(...
2.结合状态空间模型:将状态空间模型(Mamba)与UNet结合,通过全局上下文建模,改善了对长距离依赖关系的处理,从而提升了整体分割性能。 3.优化特征融合机制:通过大核卷积和Mamba的结合,LKM-UNet实现了多尺度特征的高效整合,促进了不同层次信息的充分利用,从而提高了对复杂影像的解析能力。 4.实验验证与性能提升:在多个医...
Mamba是一种状态空间模型(SSM),它是一种用于时间序列分析的统计模型。Mamba模型能够处理长序列数据,并能够捕捉数据中的全局上下文信息。在图像分割的上下文中,Mamba被用来增强网络对图像全局信息的捕捉能力。 UNet是一种深度学习模型,主要用于图像分割任务,特别是在医学图像分析领域。它由Falk et al.在2015年提出。UNet...
HCMA-UNet: A Hybrid CNN-Mamba UNet with Inter-Slice Self-Attention for Efficient Breast Cancer Segmentation 方法:论文提出HCMA-UNet,将CNN的局部特征提取能力与Mamba的长序列建模能力结合到UNet架构中,通过多视图间切片自注意力模块(MISM)实现高效3D特征提取,提升乳腺癌病灶分割性能。
作者提出了一个名为CM-UNet的基于Mamba的框架,以高效整合遥感图像语义分割中的局部-全局信息。 作者设计了一个CSMamba块,将通道和空间注意力信息融入到Mamba块中,以提取全局上下文信息。此外,作者使用多尺度注意力聚合模块辅助跳跃连接,并采用多输出损失逐步监督语义分割。
LightM-UNet是一种基于Mamba的轻量级网络,用于医学图像分割,具有以下几个创新点: 轻量级架构:作者提出了LightM-UNet,这是一个轻量级的UNet和Mamba的融合,仅拥有1M的参数数量。这是通过在UNet架构中使用Mamba来实现的,旨在解决实际医疗环境中...
LightM-UNet:一种轻量级 Mamba UNet,它将 Mamba 和 UNet 集成在一个轻量级框架中,实现了卓越的分割性能,同时将参数和计算成本分别大幅降低了 116 倍和 21 倍!代码即将开源! 点击关注 @CVer官方知乎账号,可…
🐬UNet又升级了!北大最新提出LightM-UNet,用Mamba设计1.8M参数UNet,比nnU-Net小了116倍,计算量减少21倍,精度依然SOTA! 🐬这种将Mamba与UNet结合的策略利用了两者在图像处理和网络架构上的优势,既能保持较低的计算成本,又能轻松实现优异的分割性能,在高效性、准确性、创新性等方面都遥遥领先,是医学图像分割非常...
LightM-UNet是一种基于Mamba的轻量级网络,用于医学图像分割,具有以下几个创新点: 轻量级架构:作者提出了LightM-UNet,这是一个轻量级的UNet和Mamba的融合,仅拥有1M的参数数量。这是通过在UNet架构中使用Mamba来实现的,旨在解决实际医疗环境中计算资源限制所带来的挑战。