1、主干网络介绍 Unet的主干特征提取部分由卷积+最大池化组成,整体结构与VGG类似。 本文所采用的主干特征提取网络为VGG16,这样也方便使用imagnet上的预训练权重。 VGG是由Simonyan 和Zisserman在文献《Very Deep Convolutional Networks for Large Scale Image Recognition》中提出卷积神经网络模型,其名称来源于作者所在的...
2015年提出的UNet模型是我们学习语义分割必学的一个优秀模型,它兼具轻量化与高性能,因此通常作为语义分割任务的基线测试模型,至今仍是如此,其优秀程度可见一斑。 UNet从本质上来说也属于一种全卷积神经网络模型,它的取名来源于其架构形状:模型整体呈现"U"形。它的出生是为了解决医疗影像语义分割问题的,但之后几年的...
这还允许在测试阶段对网络进行剪枝,从而减少模型的推理时间。 2.3、TransUNet TransUNet网络架构是由陈等人于2021年提出的,是一种基于Transformer的分割网络。模型结构如图3所示。TransUNet在U-Net模型的基础上引入了混合编码器,将CNN和Transformer结合起来,以解决传统卷积神经网络在建模长距离依赖性和处理大尺寸图像方面的局...
该网络由收缩路径(contracting path)和扩张路径(expanding path)组成。其中,收缩路径用于获取上下文信 【1.1】网络优点 (1) overlap-tile策略 (2)数据增强(data augmentation) (3)加权loss 【1.2】网络缺点 U-Net++作者分析U-Net不足并如何做改进:https://zhuanlan.zhihu.com/p/44958351 参考文献:https://zhuanla...
模型选择:模型我们已经准备好了,就是该系列上篇文章讲到的 UNet 网络。 算法选择:算法选择也就是我们选什么 loss ,用什么优化算法。 每个步骤说的比较笼统,我们结合今天的医学图像分割任务,展开说明。 1、数据加载 这一步,可以做很多事情,说白了,无非就是图片怎么加载,标签怎么定义,为了增加算法的鲁棒性或者增加数...
一、FCN全卷积网络模型 FCN网络模型全称为全卷积神经网络模型(Fully Convolution Network),该模型是2015年由Jonathan Long等人在一篇论文《Fully Convolutional Networks for Semantic Segmentation》中提出的语义分割模型。该模型算得上是深度学习用于语义分割领域的开山之作,在后续的语义分割模型中都可以看到FCN模型的...
1. 什么是Unet模型 Unet是一个语义分割模型,其主要执行过程与其它语义分割模型类似,首先利用卷积进行下采样,然后提取出一层又一层的特征,利用这一层又一层的特征,其再进行上采样,最后得出一个每个像素点对应其种类的图像。 看如下这幅图我们大概可以看出个所以然来: ...
U-Net模型属于卷积神经网络(Convolutional Neural Network, CNN)的一种特殊形式 。它最初由德国弗莱堡大学计算机科学系的研究人员在2015年提出,专为生物医学图像分割任务而设计。U-Net模型以其独特的U形网络结构而得名,这一结构结合了编码器和解码器的对称设计,以实现
构建一个轻量级的UNet模型可以通过以下步骤实现: 减少网络的深度:减少UNet模型中的编码器和解码器的层数,可以减少模型的参数数量和计算复杂度。可以尝试减少编码器和解码器中的卷积层数或者减少每个卷积层中的卷积核数量。 减少卷积核的大小:减少卷积核的大小可以减少模型的参数数量和计算复杂度。可以尝试减少卷积核的大小...
其中,MobileNetV1-UNet网络模型就是一种高效、轻量级的深度学习网络。这种模型结合了MobileNetV1和UNet两种网络结构,具有较好的特征提取和上下文信息回归能力。 MobileNetV1是一种轻量级的卷积神经网络,通过引入深度可分离的卷积(depthwise separable convolution)来减少模型的参数量和计算量,同时保持较高的准确率。这种网络...