(eg: FCN/Unet/Unet++/...) 实例分割(Instance Segmentation):可以理解为目标检测和语义分割的结合。(eg: Mask R-CNN/...) 相对目标检测的边界框,实例分割可精确到物体的边缘; 相对语义分割,实例分割需要标注出图上同一物体的不同个体。 全景分割(Panoptic Segmentation):可以理解为语义分割和实例分割的结合。
但Unet模型的提出可以说是将深度学习解决分割问题推上了一个新的高度。论文《U-Net: Convolutional Networks for Biomedical Image Segmentation》中的Unet模型是与FCN同年2015年提出来的,但其还是晚于FCN。Unet模型可以算是医学图像分割领域的领头者,其也是通过下采样获取特征图,然后再上采样还原到原图,但Unet模型有很...
对于FCN-32s,直接对pool5 feature进行32倍上采样获得32x upsampled feature,再对32x upsampled feature每个点做softmax prediction获得32x upsampled feature prediction(即分割图)。 对于FCN-16s,首先对pool5 feature进行2倍上采样获得2x upsampled feature,再把pool4 feature和2x upsampled feature逐点相加,然后对相...
1、FCN 《Fully Convolutional Networks for Semantic Segmentation》https://arxiv.org/abs/1411.4038 FCN是不含全连接层的全卷积网络,对图像进行像素级的分类,解决了图像的语义分割问题,可以接受任意尺寸的图像大小,采用反卷积对最后一个特征图(feature map)进行处理,使其恢复到输入图像的尺寸,对每个像素产生一个预测...
附FCN论文地址:https://arxiv.org/abs/1411.4038 三、U-net网络的理解 Unet网络结构图 整个U-Net网络结构类似于一个大型的字母U,与FCN都是很小的分割网络,既没有使用空洞卷积,也没有后接CRF,结构简单。 1. 首先进行Conv+Pooling下采样; 2. 然后反卷积进...
UNet和FCN在结构上的主要区别是UNet结构包含编码器和解码器两部分,而FCN只包含卷积神经网络结构。UNet的编码器部分用于提取图像特征,解码器部分用于将这些特征映射回原始图像大小。而FCN直接对整个图像进行卷积操作,输出整个图像的语义分割结果。UNet结构更适合于图像分割任务,因为它能够更好地保留图像细节和上下文信息。
语义分割知识点:UNet、FCN、SegNet、PSPNet、DeepLab系列 前言 语义分割网络剖析 UNet系列 UNet UNet网络有几个主要的特点: 从UNet结构图可以知道,收敛路径主要的过程为 简要总结: UNet++ 为什么UNet++可以被剪枝? 如何剪枝? 根据子网络在验证集的结果来决定剪多少。
在当时,Unet相比更早提出的FCN网络,使用拼接来作为特征图的融合方式。 FCN是通过特征图对应像素值的相加来融合特征的; U-net通过通道数的拼接,这样可以形成更厚的特征,当然这样会更佳消耗显存; Unet的好处我感觉是:网络层越深得到的特征图,有着更大的视野域,浅层卷积关注纹理特征,深层网络关注本质的那种特征,所以...
在语义分割领域,基于深度学习的语义分割算法开山之作是FCN(Fully Convolutional Networks for Semantic Segmentation),而UNet是遵循FCN的原理,并进行了相应的改进,使其适应小样本的简单分割问题。 UNet最早发表在2015的MICCAI会议上,4年多的时间,论文引用量已经达到了9700多次。 UNet成为了大多做医疗影像语义分割任务的base...
全卷积网络FCN:上采样提高分割精度,不同特征向量相加。[3] UNET:拼接特征向量;编码-解码结构;采用弹性形变的方式,进行数据增广;用边界加权的损失函数分离接触的细胞。[4] SegNet:记录池化的位置,反池化时恢复。[3] PSPNet:多尺度池化特征向量,上采样后拼接[3] ...