其中,UiO-66-NH2@Pt@UiO-66-H的H2生成速率高达2708.2 μmol g−1 H−1,是UiO-66-NH2@Pt@UiO-66-NO2的222倍。机理研究表明,UiO-66-X壳层作为微环境参数,反向调控UiO-66-NH2(光敏剂)核的激子结合能和Pt(助催化剂)上的质子还原速率,因此位于平衡点的UiO-66-NH2@Pt@UiO-66-H具有最佳的光催化活性。
其中,UiO-66-NH2@Pt@UiO-66-H的H2生成速率高达2708.2 μmol g−1 H−1,是UiO-66-NH2@Pt@UiO-66-NO2的222倍。机理研究表明,UiO-66-X壳层作为微环境参数,反向调控UiO-66-NH2(光敏剂)核的激子结合能和Pt(助催化剂)上的质子还原速率,因此位于平衡点的UiO-66-NH2@Pt@UiO-66-H具有最佳的光催化活性。
其中,UiO-66-NH2@Pt@UiO-66-H的H2生成速率高达2708.2 μmol g−1 H−1,是UiO-66-NH2@Pt@UiO-66-NO2的222倍。机理研究表明,UiO-66-X壳层作为微环境参数,反向调控UiO-66-NH2(光敏剂)核的激子结合能和Pt(助催化剂)上的质子还原速率,因此位于平衡点的UiO-66-NH2@Pt@UiO-66-H具有最佳的光催化活性。
有鉴于此,东北师范大学朱广山教授、邢宏珠教授等报道在UiO-66-NH2内部限域合成氮化碳聚合物(PCN)和Cu单原子。 本文要点 要点1.通过UiO-66-NH2和含有Cu单原子的PCN之间构筑的异质结和单原子位点,在CO2转化为CH3OH的光催化反应中表现优...
X射线光电子能谱(XPS)分析表明,UiO-66-NH2@Pt@UiO-66-X遵循-NO2<-Cl < -Br < -H < -NA < -OCH3的顺序,与-X官能团给电子能力的增加一致。通过电化学析氢反应(HER)测量,作者评估了复合材料中Pt表面的固有质子还原能力。过电位值随着Pt电子密度的增加而降低,表明表面反应效率(η3)呈现-OCH3> -NA >...
图4. UiO-66-NH2@Pt@UiO-66-H的表征 机理研究 X射线光电子能谱(XPS)分析表明,UiO-66-NH2@Pt@UiO-66-X遵循-NO2<-Cl < -Br <-H< -NA < -OCH3的顺序,与-X官能团给电子能力的增加一致。通过电化学析氢反应(HER)测量,作者评估了复合材料中Pt表面的固有质子还原能力。过电位值随着Pt电子密度的增加而...
图2.(a)UiO-66-NH2和缺陷UN300/6的FTIR光谱。插图:羧酸基团吸收峰的移动。UiO-66-NH2和缺陷UN300/6的(b)N 1s、(c)C 1s和Zr 3d的XPS。 图3. UiO-66-NH2、缺陷UNTemp/6和Cu@UN300/6的(a)UV-Vis光谱和(b)光电流响应。Cu@UN300/6的(c)高分辨率和(d,e)像差校正的STEM。
图4. UiO-66-NH2@Pt@UiO-66-H的表征 机理研究 X射线光电子能谱(XPS)分析表明,UiO-66-NH2@Pt@UiO-66-X遵循-NO2<-Cl < -Br < -H < -NA < -OCH3的顺序,与-X官能团给电子能力的增加一致。通过电化学析氢反应(HER)测量,作者评估了复合材料中Pt表面的固有质子还原能力。过电位值随着Pt电子密度的增加...
(Ag2CO3)的直接Z型异质结结构(UAC-X,X= 20, 50, 100, 150和200, 代表UiO–66–NH2在复合物中的含量),采用傅里叶变换红外光谱(FTIR)、粉末X射线衍射(PXRD)、扫描电镜(SEM)、透射电镜(TEM)、高倍透射电镜(HRTEM)、紫外-可...
uio-66-nh2分子式uio-66-nh2分子式 氨基苯二甲酸锆。 化学式中有结构式和分子式,氨基苯二甲酸锆的结构式是NH2-UIO-66(Zr),其它的分子式是C48H30N6O32Zr6,是锆金属离子与含有氨基的对苯二甲酸羧基上两个氧原子配位形成的。 有机骨架材料NH2-UIO-66(Zr),通过XPS和SEM表征其构成和微观形貌,SEM图显示为不...