每个卷积层后接BN层和ReLU激活函数,然后将输入直接加在最后的ReLU激活函数前,这种结构用于层数较少的神经网络中,比如ResNet34。若输入通道数比较多,就需要引入1\times 1卷积层来调整输入的通道数,这种结构也叫作瓶颈模块,通常用于网络层数较多的结构中。如下图所示: 上图左中的残差块的实现如下,可以设定输出通道数...
这个项目使用主流的深度学习框架 Pytorch + UNet来实现,项目的特点是支持训练、分割算法特别轻量化、能够一键执行训练+预测,能够适应分割结构复杂的医学图像。项目提供完整的代码,包括训练 + 预测代码、一键执行脚本、训练好的分割模型权重 (当然也支持自己训练)、项目三方依赖库 (requirements.txt)、训练标注图片、待...