例如在VGG16中,第一个全连接层FC1有4096个节点,上一层POOL2是7*7*512 = 25088个节点,则该传输需要4096*25088个权值,需要耗很大的内存。又如下图: 最后的两列小圆球就是两个全连接层,在最后一层卷积结束后,进行了最后一次池化,输出了20个12*12的图像,然后通过了一个全连接层变成了1*100的向量。 这是...
1. 隐藏层可以有很多层 2. 输出可以不止一个 表示 前向传播算法 由线性关系系数权重w和偏移量b的定义: 在前向传播的算法中,X为上一层隐藏层的计算结果(输出)。 反向传播算法 参数和超参数 参数: W,b(确定一个模型的数值集合) 超参数:学习率,迭代次数,隐藏层层数,隐藏层单元数,激活函数的选择(控制某个...
我们发现,假设该层是冗余的,在引入ResNet之前,我们想让该层学习到的参数能够满足h(x)=x,即输入是x,经过该冗余层后,输出仍然为x。但是可以看见,要想学习h(x)=x恒等映射时的这层参数时比较困难的。ResNet想到避免去学习该层恒等映射的参数,使用了如上图的结构,让h(x)=F(x)+x;这里的F(x)我们称作残差项...
ResNet有不同网络层数的版本,如18层,34层,50层,101层以及152层,这里以常见的50层来举例说明。ResNet-50的网络架构如图1(b)所示,最主要的部分在于中间经历4个大的卷积组,而这4个卷积组分别包含了[3,4,6,3]共4个Bottleneck模块。最后经过一个全局平均池化确保feature map大小变为1*1,然后进行1000维的全连接...
注:101层网络仅仅指卷积或者全连接层,而激活层或者Pooling层并没有计算在内; 这里我们关注50-layer和101-layer这两列,可以发现,它们唯一的不同在于conv4_x,ResNet50有6个block,而ResNet101有23个block,查了17个block,也就是17 x 3 = 51层。
ResNet50卷积神经网络输出数据形参分析-笔记 ResNet50包含多个模块,其中第2到第5个模块分别包含3、4、6、3个残差块 50=49个卷积(3+4+6+3)*3+1和一个全连接层 分析结果为: 输入数据形状:[10, 3, 224, 224] 最后输出结果:linear_0 [10, 1] [2048, 1] [1] ResNet50包含多个模块,其中第2到第5...