残差网络(Residual Network,简称 ResNet)是由微软研究院于 2015 年提出的一种深度卷积神经网络。它的主要特点是在网络中添加了“残差块”(Residual Block),有效地解决了深层网络的梯度消失和梯度爆炸问题,从而使得更深的网络结构可以训练得更好。 ResNet 的核心思想是学习残差,即在训练过程中让神经网络学习一个残差...