DFP的CC1和CC2信号上都必须有上拉电阻Rp,上拉到5V或3.3V。或者CC1和CC2都用电流源上拉。最终的目的是在插入后,能检测到CC1或CC2上的电压,进而判断是否翻转以及DFP的电流能力。如下是所有可能的配置。可以选择右边三列中的任何一列作为上拉方式,比如Fairchild的FUSB300就是用330uA上拉,TI的TUSB320LAI用的是8...
但是,有些不合规的传统 USB Type-C 电缆要么缺失上拉电阻(浮空或短路),要么阻值不正确。这都可能导致不正确的输入电流限制检测(如同使用 CC 引脚的输入电流检测),或者可能导致接收端 CC 引脚上发生过压 (OV) 事件,因为接收端的 CC 引脚可能直接短接至 VBUS。为避免这些问题,USB Type-C 接收端设备应能...
DFP的CC1和CC2信号上都必须有上拉电阻Rp,上拉到5V或3.3V。或者CC1和CC2都用电流源上拉。最终的目的是在插入后,能检测到CC1或CC2上的电压,进而判断是否翻转以及DFP的电流能力。如下是所有可能的配置。可以选择右边三列中的任何一列作为上拉方式,比如Fairchild的FUSB300就是用330uA上拉,TI的TUSB320LAI用的是8...
一、识别充电器类型 Type-C接口中的56k欧姆上拉电阻可以告诉设备所连接的充电器类型,这样设备就能够根据充电器的能力进行适当的充电协商和功率管理。具体来说,当设备连接到充电器时,会通过CC1和CC2信号线读取上拉电阻的值,从而判断充电器的类型和能力,进而...
也可以通过DFP上的上拉10K电阻,计算出UFP上CC pin的电压5V * 5.1K / (5.1K+10K)=1.688V。一样可以判断DFP为3.0A。 4. 检测设备的端口类型 CC1和CC2两个引脚,再加上上下拉的电阻可以组合中很多种状态,根据Type-C的协议,我们可以通过这些状态来判断插入的设备是什么设备,比如是检测器,显示器还是Audio和存储...
DFP(下行端口)为主机端口,UFP(上行端口)为设备端口。如图所示,在DFP中的CC通道上有上拉电阻,相应的在UFP中有对应的下拉电阻。在DFP与UFP连接之前,VBUS没有输出,当两者连接之后,DFP检测到CC引脚的电平被拉低,DFP则识别到UFP设备已连接并打开VBUS上的MOSFET,为UFP设备供电。
另外CC可以通过开关切换上拉Rp作为Source,也可以切换下拉Rd作为Sink;至于Vconn,则通常是source端供电,俩边CC同时上拉,一边是Rd连接Sink,那么另一边则会给到cable端的Emark芯片供电(如果没有Emark芯片,则悬空);检测Vconn是通过Ra,Ra表示的是线缆(含有Emark芯片)的CC下拉电阻;具体Rp,Rd,Ra电阻值如下图:...
UFP的CC1和CC2管脚都要有一个下拉电阻Rd到GND(或者使用电压钳位)。Rd的处理方式如下表。 注意,最后一列的电流源连接至的电压,是指3.1节中表格的最后一列电流源的上拉电压。 结合这个表格,和3.1节的表格,我们把每种可能的上下拉范围都计算出了最终形成的电压范围,如下表。
在DFP的CC pin有上拉电阻Rp,在UFP有下拉电阻Rd。未连接时,DFP的VBUS是无输出的。连接后CC pin相连,DFP的CC pin会检测到UFP的下拉电阻Rd,说明连接上了,DFP就打开Vbus电源开关,输出电源给UFP。而哪个CC pin(CC1,CC2)检测到下拉电阻就确定接口插入的方向,顺便切换RX/TX。比如在全功能TYPEC接口情况下 ...
UFP的CC1和CC2管脚都要有一个下拉电阻Rd到GND(或者使用电压钳位)。Rd的处理方式如下表。 注意,最后一列的电流源连接至的电压,是指3.1节中表格的最后一列电流源的上拉电压。 结合这个表格,和3.1节的表格,我们把每种可能的上下拉范围都计算出了最终形成的电压范围,如下表。