两遍算法(Two-pass algorithm)是图像处理中一种用来查找和标记图像中连通区域(或联通分量、区域)的方法。这种算法首次被提出是在20世纪60年代,如今已成为图像处理中常用的一种方法。这种算法相对简单而且高效,因此在实际应用中被广泛使用。在本文中,我们将详细介绍两遍算法的原理和实现过程,并且通过一些示例来说明其应...
主算法 booltwoPass(cv::Mat pBinary,intbackground,intforeground,intborder, cv::Mat& pLabel){// connected component analysis (4- component)// use two-pass algorithm// 1. first pass: label each foreground pixel with a label// 2. second pass: visit each labeled pixel and merge neighbor lab...
实现 intImageAlgorithm::TwoPassConnetedDomin(Mat image){ Mat imageFlag; imageFlag.create(image.rows, image.cols, CV_16UC1);for(intk =0; k < image.rows; ++k) {for(inti =0; i < image.cols; ++i) { imageFlag.at<ushort>(k, i) = UINT16_MAX; } }uint16_tmapp[UINT16_MAX];me...
Toprogramslicing,theconceptof SDGandatwo-passalgorithmareeffectivetosolve"calling-context"problem. 系统依赖图的概念及两阶段图形可达性算法的出现,则有效解决了程序切片的过程调用问题。 www.dictall.com 3. Thistwo-passapproachtransforms thedocumenttwice,with theresultofthefirstXSLTtransformedbyasecondXSLT. ...
Sinoquet C: Iterative two-pass algorithm for missing data imputation in SNP arrays. J Bioinf and Comput Biol 2009, 7 : 833-852. Publisher Full TextSinoquet C.Iterative two-pass algorithm for missing data imputation in SNP arrays. J Bioinform Comput Biol. 2009; 7:833–52.Sinoquet, C...
While the two-pass algorithm ... Chulhee,Han,Jongduk,... - 《Optics Express》 被引量: 0发表: 2019年 Dual‐energy approach to reduce cone‐beam artefacts in a circular orbit cone‐beam CT system When there exist multiple dense structures within a large cone angle, two-pass algorithm is ...
The 3D FFT (three-dimensional fast Fourier transform) is a widely-studied algorithm; however, the conventional algorithm needs to traverse the data array three times. In each pass, it computes multiple 1D FFTs along one of three dimensions, giving rise to plenty of non-unit strided memory ...
连接组件标记算法(connected component labeling algorithm)是图像分析中最常用的算法之一,算法的实质是扫描一幅图像的每个像素,对于像素值相同的分为相同的组(group),最终得到图像中所有的像素连通组件。扫描的方式可以是从上到下,从左到右,对于一幅有N个像素的图像来说,最大连通组件个数为N/2。扫描是基于每个像素...
视频编码标准的目标始终是,使用更少的比特数达到更高的清晰度,这一目标可以表示成有约束问题。解决该有约束的率失真优化问题的一个有效的方法是,采用拉格朗日乘子优化法(Lagrange Operator Algorithm),将有约束优化问题转换成无约束优化问题。引入拉格朗日乘子后,有约束问题可以转化为式(4)的形式。
These two transformations are computed using a least square fit algorithm. Resampling with bilinear or cubic convolution interpolation is also separable into the two-pass technique. This algorithm is suitable for hardware implementation of current image processing systems. 展开 ...