import pylab as plt plt.plot(x, y) plt.show() 2. 在一张图纸里绘制多个图形 (1)注意这里不需要matlab的hold on操作。 plt.plot(x, y) plt.plot(x, y * 2) plt.show() (2)更丰富绘图:顺序是——颜色、点的形状、线型 plt.plot(x, y, 'y*-') #画图,颜色yellow,点为*,线型为- 常见的...
['red', 'green', 'blue'] for i in range(len(colors)): plt.scatter(X_tsne[y == i, 0], X_tsne[y == i, 1], c=colors[i], label=iris.target_names[i]) plt.legend() plt.title('t-SNE Scatter Plot of Iris Dataset') plt.xlabel('t-SNE Component 1') plt.ylabel('t-SNE ...
l1, = plt.plot(x, y2, label='up') l2, = plt.plot(x, y1, color='red', linewidth='1.0', linestyle='--', label='down') plt.legend(handles=[l1], labels=['aaa'], loc="upper right") plt.show() 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17...
Z=Z.rename(columns={0:"dim1",1:"dim2"})Z['state']=df['state'].astype('str').astype('category')sns.scatterplot(x="dim1",y="dim2",hue="state",data=Z,edgecolors='none',alpha=0.2,palette='husl')sns.despine()plt.tight_layout()plt.xlabel('Dimension 1')plt.ylabel('Dimension ...
cmap = plt.get_cmap('viridis')colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))] class_distr = []# Plot the different class distributionsfor i, l in enumerate(np.unique(y)):_x1 = x1[y == l]_x2 = x2[y == ...
sns.scatterplot(data=data_pca, hue='class', x='1st_component', y='2nd_component') plt.show()第5步-t-SNE降维与可视化 (1)导入所需的库 from sklearn.manifold import TSNE (2)t-SNE降维 tsne = TSNE(n_components=2)tsne.fit(X_std)(3)可视化t-SNE降维分类结果 X_tsne = pd.DataFrame...
in label_subset[idx]] f, ax = plt.subplots(1, 2, figsize=(14, 6)) ax[0].scatter(pca[idx, 0], pca[idx, 1], c=label_subset) ax[0].set_title('PCA Cluster Plot') ax[1].scatter(tsne[idx, 0], tsne[idx, 1], c=label_subset) ax[1].set_title('TSNE Cluster Plot') plot...
reslut=ts.fit_transform(data)# 调用函数,绘制图像 fig=plot_embedding(reslut,label,t-SNEEmbeddingofdigits)# 显示图像 plt.show()# 主函数if__name__==__main__:main() 结果:
pyplot.plot(Y[100:150,0],Y[100:150,1],'b*',markersize=30) pyplot.title('CUSTOM') pyplot.subplot(1,2,2) t1=time.time() Y1=manifold.TSNE(2).fit_transform(data.data) t2=time.time() print "Sklearn TSNE cost time: %s"%str(round(t2-t1,2)) ...
TSNE的可视化特征结果 一、可视化特征或embeddings 1.1 二维的值 对bert输出层的可视化(这是个二维的,batch, hidden_state) codeantenna 1.2 三维的值 对bert的last_state进行可视化(这个是三维的,batch,seq_length, hidden_state) deftsne_plot_similar_words_png(title, embedding_clusters, a, filename=""): ...