T-SNE(t-distributed Stochastic Neighbor Embedding)是一种用于非线性降维的算法,主要用于数据可视化。它可以将高维数据降至二维或三维,使数据点之间的距离尽可能保持不变,从而实现数据的可视化。T-SNE 算法的核心思想是通过一个高斯分布的概率模型来描述数据点之间的相似性,然后通过一个梯度下降过程来最小化这个模型的...
pytorch使用TSNE 技术可视化训练样本的特征 pytorch 可训练参数, 关于pytorch训练的两种方式:多GPU或者分布式训练是一种利用多台计算机或者单台服务器上的多个GPU来加速深度学习模型训练的方式。相对于单GPU的训练方式,多GPU或者分布式训练可以大幅度提高训练速度,