为了学习到树结构的语义信息,论文中提出了两种 Tree-LSTM 模型:Child-Sum Tree-LSTMs 和 N-ary Tree LSTMs。实验部分 Tree-LSTMs 对比多种 LSTMs 变体,在语义相似性计算和情感分类任务中超过所有 baselines。 Algorithm/Model LSTM 首先简单介绍下 LSTM 提供后续论文的改进对比,主要模型架构如下所示 每个门电路的...
论文提出两个Tree-LSTM模型结构:Child-Sum Tree-LSTM模型和N-ary Tree-LSTM模型,两种模型都能够处理树型结构的输入。标准的LSTM含有输入门ij和输出门oj,记忆单元cj和隐藏状态hj,标准的LSTM和树型LSTM之间的区别在于门向量和记忆单元向量的更新要基于多个child units,前者只需要从上一时刻筛选出信息,而后者需要从多个...
循环神经网络模型存在信息记忆丢失、忽略上下文非连续词之间的相关性和梯度弥散的问题,为此本文结合自注意机制和 Tree-LSTM 模型,并且在 Tree-LSTM 模型的输出端引入了 Maxout 神经元,基于以上两种改进基础上构建了 SAtt-TLSTM-M 模型. 实验使用 COAE2014 评测数据集进行情感分析,实验结果表明:本文提出的模型相比于...
Tree-Structured LSTM模型 论文概要 由于能够保持按照时序的序列信息,LSTM(Long Short-Term Memory)网络在序列模型任务上能够有非常好的表现。但是该模型只能输入线型的序列,对于树型的输入(比如依赖树)无法很好的处理,由此,论文提出两种Tree-LSTM的模型,将LSTM拓展到树型的输入结构上,并在两个任务:预测语义相关性和语...
采用Stack-Tree LSTM的汉语一体化依存分析模型 LIU Hang;LIU Mingtong;ZHANG Yujie;XU Jinan;CHEN Yufeng 【摘要】在汉语一体化依存分析中,如何利用分词、词性标注和句法分析的中间结果作为分析特征成为核心问题,也是三个任务相互制约协调、共同提高性能的关键所在.目前无论基于特征工程的方法还是基于深度学习的方法尚无法...
文本分类资源汇总,包括深度学习文本分类模型,如SpanBERT、ALBERT、RoBerta、Xlnet、MT-DNN、BERT、TextGCN、MGAN、TextCapsule、SGNN、SGM、LEAM、ULMFiT、DGCNN、ELMo、RAM、DeepMoji、IAN、DPCNN、TopicRNN、LSTMN 、Multi-Task、HAN、CharCNN、Tree-LSTM、DAN、TextRCN
文本分类资源汇总,包括深度学习文本分类模型,如SpanBERT、ALBERT、RoBerta、Xlnet、MT-DNN、BERT、TextGCN、MGAN、TextCapsule、SGNN、SGM、LEAM、ULMFiT、DGCNN、ELMo、RAM、DeepMoji、IAN、DPCNN、TopicRNN、LSTMN 、Multi-Task、HAN、CharCNN、Tree-LSTM、DAN、TextRCN
文本分类资源汇总,包括深度学习文本分类模型,如SpanBERT、ALBERT、RoBerta、Xlnet、MT-DNN、BERT、TextGCN、MGAN、TextCapsule、SGNN、SGM、LEAM、ULMFiT、DGCNN、ELMo、RAM、DeepMoji、IAN、DPCNN、TopicRNN、LSTMN 、Multi-Task、HAN、CharCNN、Tree-LSTM、DAN、TextRCN