The TRAPPIST-1 system is remarkable for its seven planets that are similar in size, mass, density and stellar heating to the rocky planets Venus, Earth and Mars in the Solar System1. All the TRAPPIST-1 planets have been observed with transmission spectroscopy using the Hubble or Spitzer space...
The astronomers calculate the first realistic simulation of the propagation of energetic particles through the turbulent magnetic field environment of an M dwarf star and its wind, and they tailored the details to the TRAPPIST-1 system. They find that particles are trapped within the star’s magnet...
2 Evolution of the resonant angles for three simulations that included our fiducial Trappist-1 system and 1000 rogue planetesimals. Each system was stable for the full 10 Myr simulation. The resonant angles that are shown are the same ones presented in Extended Data Fig. 1. The total mass in...
Seven rocky planets orbit the nearby dwarf star TRAPPIST-1, providing a unique opportunity to search for atmospheres on small planets outside the Solar System1. Thanks to the recent launch of the James Webb Space Telescope (JWST), possible atmospheric constituents such as carbon dioxide (CO2) ar...
The animation shows a simulation of the planets of TRAPPIST-1 orbiting for 90 Earth-days. After 15 Earth-days, the animation focuses only on the outer three planets: TRAPPIST-1f, TRAPPIST-1g, TRAPPIST-1h. The motion freezes each time two adjacent planets pass each other; an arrow appears ...