Using this ,we have another formula of determinants: det A=∑perm p(sign p)a1,p1...an,pn ,this is the formula that is first introduced when I first learnt matrix. The Cofactor Matrix(伴随矩阵) The cofactor matrix of an n×n matrix A is the n×n matrix cof(A) whose i,j entry...
Cofactor( &cofactor ); cofactor.Transpose( adjoint ); } 开发者ID:gefariasjr,项目名称:projetofinal1,代码行数:6,代码来源:glmatrix.cpp 示例6: InverseMVP ▲点赞 1▼ Matrix4InverseMVP(constMatrix4 &invP,constVector3 &T,constMatrix4 &R){returnR.Transpose() * Matrix4::Translation(T).Transpos...
To specify the determinant of a general (m x m) matrix A = (aij) we define the minor ofthe ij-th element aij as the determinant ofthe m - 1) x (m - 1 matrix that is obtained by deleting the i-th row and j-th column from A. The cofactor of aii, denoted by Aij, is the...
Gets the adjoint matrix: The transpose of the matrix's cofactor. */Mat4x4Adjoint(constMat4x4& m){//Another huge pain!//Build a new 4x4 matrix from cofactors.//C(i, j) = (-1)^(i+j)*det(submatrix(i,j))Mat4x4 result = Mat4x4::Zero();for(inti =0; i < MAT4X4_NUM_CELLS; i...
temp._data[i] *=-1;// Finally the adjoint of A is the transpose of the cofactor matrixtemp = temp.Transpose();returntemp; } 开发者ID:cdrandin,项目名称:Graphics-OpenGL,代码行数:33,代码来源:Matrix3.cpp 示例2: view_matrix ▲点赞 6▼ ...