因为模型的残差块里又有残差连接,所以取名为Res2Net。 3.1 Res2Net模型结构 模型结构看起来很简单,将输入的特征x,split为k个特征,第i+1(i = 0, 1, 2,...,k-1) 个特征经过3×3卷积后以残差连接的方式融合到第 i+2 个特征中。这就是Res2Net的主要结构。那么这样做的目的是为什么呢?能够有什么好处呢...
与ImageNet相比,转换为图像分类可提高78.7%的top-1准确性,通过从头开始训练同一台Transformer可以提高到64.7%,展示了我们模型的通用性,尽管视频和图像之间存在领域差距。 VATT的音频变换器也创下了基于波形的音频的新记录,通过在AudioSet上实现39.4%的mAP而无需任何监督的预训练,从而实现事件识别。
Swin Transformer是由微软亚洲研究院在今年公布的一篇利用transformer架构处理计算机视觉任务的论文。Swin Transformer 在图像分类,图像分割,目标检测等各个领域已经屠榜,在论文中,作者分析表明,Transformer从NLP迁移到CV上没有大放异彩主要有两点原因:1. 两个领域涉及的scale不同,NLP的token是标准固定的大小,而CV的特征尺...
Swin Transformer是由微软亚洲研究院在今年公布的一篇利用transformer架构处理计算机视觉任务的论文。Swin Transformer 在图像分类,图像分割,目标检测等各个领域已经屠榜,在论文中,作者分析表明,Transformer从NLP迁移到CV上没有大放异彩主要有两点原因:1. 两个领域涉及的scale不同,NLP的token是标准固定的大小,而CV的特征尺...
深度学习应用篇-计算机视觉-图像分类[3]:ResNeXt、Res2Net、Swin Transformer、Vision Transformer等模型结构、实现、模型特点详细介绍 1.ResNet 相较于VGG的19层和GoogLeNet的22层,ResNet可以提供18、34、50、101、152甚至更多层的网络,同时获得更好的精度。但是为什么要使用更深层次的网络呢?同时,如果只是网络层数的...
深度学习应用篇-计算机视觉-图像分类[3]:ResNeXt、Res2Net、Swin Transformer、Vision Transformer等模型结构、实现、模型特点详细介绍 1.ResNet 相较于VGG的19层和GoogLeNet的22层,ResNet可以提供18、34、50、101、152甚至更多层的网络,同时获得更好的精度。但是为什么要使用更深层次的网络呢?同时,如果只是网络层数的...
深度学习应用篇-计算机视觉-图像分类[3]:ResNeXt、Res2Net、Swin Transformer、Vision Transformer等模型结构、实现、模型特点详细介绍 1.ResNet 相较于VGG的19层和GoogLeNet的22层,ResNet可以提供18、34、50、101、152甚至更多层的网络,同时获得更好的精度。但是为什么要使用更深层次的网络呢?同时,如果只是网络层数的...