《Transformer Dissection: A Unified Understanding of Transformer’s Attention via the Lens of Kernel》,简单论述了Decoder不是permutation invariant《Transformer Language Models without Positional Encodings Still Learn Positional Information》,No Positional Encoding对LLM的影响。 之前有一篇回答:zhihu.com/question/...
Transformer 模型中的位置编码(Positional Encoding)是为了让模型能够考虑单词在句子中的位置。由于 Transfo...
在transformer的encoder和decoder的输入层中,使用了Positional Encoding,使得最终的输入满足: input = input\_embedding + positional\_encoding 这里,input_embedding是通过常规embedding层,将每一个token的向量维度从vocab_size映射到d_model,由于是相加关系,自然而然地,这里的positional_encoding也是一个d_model维度的向量。
位置编码(Positional encoding)可以告诉Transformers模型一个实体/单词在序列中的位置/索引,这样就为每个位置分配一个唯一的表示。虽然最简单的方法是使用索引值来表示位置,但这对于长序列来说,索引值会变得很大,这样就会产生很多的问题。 位置编码将每个位置/索引都映射到一个向量。所以位置编码层的输出是一个矩阵,其中...
P[k, 2*i+1] = np.cos(k/denominator) return P P = getPositionEncoding(seq_len=100...
Transformer中的位置编码(Positional Encoding) 标准位置编码 原理上Transformer是无法隐式学到序列的位置信息的,为了可以处理序列问题,Transformer提出者的解决方案是使用位置编码(Position Encode/Embedding,PE) . 大致的处理方法是使用sin和cos函数交替来创建位置编码PE, 计算公式如下: ...
14 Transformer之位置编码Positional Encoding (LIaky77编辑于 2024年11月08日 09:33 (1)为什么transformer需要位置编码 attention优点: 全局感知 并行化计算 attention缺点: 计算开销大 可以并行,也就是词与词之间不存在顺序关系,两个相同的词在不同的位置,计算得到的结果是相同的(打乱一句话,其每个词的词向量计算...
位置编码(Positional encoding)可以告诉Transformers模型一个实体/单词在序列中的位置或位置,这样就为每个位置分配一个唯一的表示。虽然最简单的方法是使用索引值来表示位置,但这对于长序列来说,索引值会变得很大,这样就会产生很多的问题。 位置编码将每个位置/索引都映射到一个向量。所以位置编码层的输出是一个矩阵,其...
Transformer 模型中的位置编码(Positional Encoding)是为了让模型能够考虑单词在句子中的位置。 由于Transformer 的自注意力(Self-Attention)机制本身并不考虑单词的顺序,位置编码就成为了引入这种顺序信息的关键。 位置如图 位置编码(Positional Encoding)分别加到了输入嵌入(Input Embedding)和输出嵌入(Output Embedding)之后...
Transformer 模型中的位置编码(Positional Encoding)是为了让模型能够考虑单词在句子中的位置。 由于Transformer 的自注意力(Self-Attention)机制本身并不考虑单词的顺序,位置编码就成为了引入这种顺序信息的关键。 位置如图 位置编码(Positional Encoding)分别加到了输入嵌入(Input Embedding)和输出嵌入(Output Embedding)之后...