最初的 Transformer 是基于在机器翻译任务中广泛使用的 encoder-decoder 架构。 如上图所示,encoder 由许多堆叠在一起的 encoder 层组成。 让我们将这些 encoder 层放大。 从上图可以看到,每个 encoder 层接收由 embedding 组成的序列,然后将序列输入子层: 多头注意力(multi-head self-attention)层 应用于每个输入 ...
Decoder:Transformer中的Decoder是用于生成输出序列的模块。它接受Encoder的输出,以及前面已经生成的部分输出序列作为输入。Decoder的主要任务是生成下一个位置的词,直到整个序列生成完成。Decoder同样也是由多层的自注意力机制和全连接层组成,但相比于Encoder还加入了一个额外的注意力机制,用于将Encoder输出的信息融合到生成过...
这样看在Transformer中主要部分其实就是编码器Encoder与解码器Decoder两个部分; 编码器: 编码器部分是由多头注意力机制,残差链接,层归一化,前馈神经网络所构成。 先来了解一下多头注意力机制,多头注意力机制是由多个自注意力机制组合而成。 自注意力机制: 我们的输入是词嵌入向量与位置编码所结合而成的一种编码将其...
Encoder:接收输入序列,生成包含语义信息的特征表示。 Decoder:使用Encoder生成的特征表示和前面已生成的输出序列生成下一个输出单词。 通过上述机制,Transformer模型能够在不依赖序列顺序的情况下捕捉序列中的长距离依赖关系,并生成高质量的翻译、文本生成等任务的输出。 代码示例(完整的Transformer模型,包括Encoder和Decoder) ...
中我们仅仅使用了Transformer的encoder进行编码,然后直接flatten再使用一个MLP得到预测结果,而不是使用decoder来进行解码得到输出。 在这篇文章中,将详细讲解Transformer完整的Encoder-Decoder架构在时间序列预测上的应用。 II. Transformer 先给出完整的模型定义代码: class TransformerModel(nn.Module): def __init__(sel...
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义...
最初的Transformer是基于广泛应用在机器翻译领域的Encoder-Decoder架构: Encoder: 将由token 组成的输入序列转成由称为隐藏状态(hidden state)或者上下文(context)的embedding向量组成的序列。 Decoder: 根据Encoder 的隐藏状态迭代生成组成输出序列的 token。
Transformer的解码器和一般的Encoder-Decoder结构类似,融合编码器的输出以及解码器当前位置之前已经预测出的输出,一齐预测出当前位置的预测结果,通过逐位依次预测完成Seq2Seq的任务。Transformer解码器结构如下 Transformer的解码器 右侧部分为Decoder解码器,将期望预测的目标文本添加start和end标识位置,底部将目标文本作为输入,...
大模型 | Transformer推理结构简析(Decoder + MHA) 不涉及transformer原理,只看transform结构的具体运行过程,涉及到推理。关于原理细节可参考这篇或者查阅其他相关优秀文章。 一、Transformer 基本结构 Transformer由encoder和decoder组成,其中: encoder主要负责理解(understanding) The encoder’s role is to generate a ...
在推理时,Encoder的工作流程与训练时相同,它负责将输入文本编码成一系列包含丰富语义信息的向量,这些向量将作为Decoder的输入。 Decoder的工作机制 训练过程: 输入处理:Decoder的输入包括两部分:一是Encoder的输出(即整个输入序列的编码),二是Decoder自身的输入(通常是目标序列的已生成部分,在训练初期可以是目标序列的左移...