Code Pull requests Actions Projects Security Insights Additional navigation options master BranchesTags Code Folders and files Name Last commit message Last commit date Latest commit History 14 Commits TED_data docker image .gitignore README.md
Code of ICLR2023 paper "TaskPrompter: Spatial-Channel Multi-Task Prompting for Dense Scene Understanding" and ECCV2022 paper "Inverted Pyramid Multi-task Transformer for Dense Scene Understanding" - prismformore/Multi-Task-Transformer
Transforms the Apex code coverage JSON created during Salesforce deployments and test runs into SonarQube, Clover, LCovOnly, or Cobertura format.. Latest version: 2.7.1, last published: 16 hours ago. Start using apex-code-coverage-transformer in your pro
CoTexT: Multi-task Learning with Code-Text Transformer 基于Transformer 的 代码-文本 多任务学习 链接: https://arxiv.org/abs/2105.08645v4arxiv.org/abs/2105.08645v4 0:摘要 我们提出了CoTexT,一种预先训练过的、基于转换的编码器-解码器模型,它可以学习自然语言(NL)和编程语言(PL)之间的代表性上下...
对梯度消失有一定的帮助,因为attention机制提供了源句子信息与解码过程的直接连接,缩短了路径距离 attention机制提供了一些可解释性,通过attention分值,可以直观看到每一步的解码过程,decoder更关注encoder源句子的那部分 attention机制在文章摘要,对话,code生成等多个应用都取得了效果...
GBA-IDA-Pseudo-Terminal 2025-01-16 11:57:11访问 积分:1 EXE6_Tools 2025-01-16 11:56:47访问 积分:1 aws-tutorial-code 2025-01-16 10:46:38访问 积分:1 specctl 2025-01-16 10:46:06访问 积分:1 GrovePi-EE250 2025-01-16 10:30:34访问 积分:1 关于...
展开全部 机器翻译 AI理解论文&经典十问 挑战十问 Request failed with status code 503 参考文献 被引用 社区问答 Request failed with status code 503 被引用 发布时间·被引用数·默认排序 Request failed with status code 503
If CodeFormer is helpful to your images or projects, please help star this repo. Thanks! :hugs: [News]:Due to copyright issues, we have to delay the release of the training code (expected by the end of this year). Please star and stay tuned for our future updates!
Inspired by the GPT-2 transformer model developed by OpenAI, we trained a multi-layer transformer model for code generation (GPT-C) on more than half-million public open-source repositories for multiple programming languages. During data pre-processing, we parse the so...
Code: github.com/YuchuanTian/ 背景: 传统的Transformer模型在自然语言处理(NLP)领域取得了显著成就,但随着模型规模的扩大,其计算需求也大幅增加,特别是在注意力机制部分。 大型语言模型(LLMs)的部署面临计算资源和能耗的挑战,尤其是在移动设备和机器人等资源受限的环境中。 为了优化Transformer模型,研究社区提出了多...