而Self-Attention和Cross-Attention则是这两种组件中不可或缺的部分,它们在模型的工作机制中起到了关键的作用。 一、Encoder和Decoder的作用 Encoder和Decoder是Transformer模型的两个核心组件,它们共同构成了序列到序列(seq2seq)的学习框架。Encoder的主要任务是处理输入序列,将其转换为一组
class encoder(nn.Module):def __init__(self):super(Encoder, self).__init__()self.positional_encoding = Positional_Encoding(config.d_model)self.muti_atten = Mutihead_Attention(config.d_model,config.dim_k,config.dim_v,config.n_heads)self.feed_forward = Feed_Forward(config.d_model)self.ad...
Transformer模型中的Encoder(编码器)和Decoder(解码器)是两个核心组件,它们在模型中扮演着不同的角色,并具有一些关键的区别。以下是对它们的详细比较:一、主要任务与功能Encoder(编码器)主要任务:处理输入序列,将其转换为一组内部表示(也称为编码)。这些内部表示将捕获输入序列中的关键信息,以便后续的处理和生成任务使...
理解Transformer模型中的Encoder和Decoder是掌握其工作原理的关键。我们可以通过以下几个方面来解释它们: Encoder Encoder的主要任务是将输入序列(通常是文本)转换为一组特征表示(也称为编码)。这些特征表示包含了输入序列的语义信息,供Decoder在生成输出序列时参考。 输入嵌入(Input Embedding):首先,输入的每个单词或符号通...
Transformer的Encoder-Decoder编码器-解码器结构,这种结构被广泛应用于处理序列格式的数据(Seq2Seq);编码器和解码器是其组成部分的核心结构。 编码的过程是一个模式提取的过程,它的作用是把输入句子的特征提取出来;比如句子的文字,语义关系等;而解码的过程是一个模式重建的过程,它是根据编码器获取的模式特征生成新的我...
Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义,并发现它们之间的隐藏关系。解码器依托编码器提供的深入洞察,负责生成所需的输出,无论是将句子翻译成另一种语言、生成一个精确的摘要,还是写代码。
中我们仅仅使用了Transformer的encoder进行编码,然后直接flatten再使用一个MLP得到预测结果,而不是使用decoder来进行解码得到输出。 在这篇文章中,将详细讲解Transformer完整的Encoder-Decoder架构在时间序列预测上的应用。 II. Transformer 先给出完整的模型定义代码: class TransformerModel(nn.Module): def __init__(sel...
【Transformer系列(1)】encoder(编码器)和decoder(解码器)_encoder和decoder的区别_路人贾'ω'的博客-CSDN博客
BERT Transformer 使用双向 self-attention,而 GPT Transformer 使用受限制的 self-attention,其中每个 token 只能处理其左侧的上下文。双向 Transformer 通常被称为“Transformer encoder”,而左侧上下文被称为“Transformer decoder”,decoder 是不能获要预测的信息的。
Transformer中的encoder和decoder都遵循多头自注意力模块的叠加结构。 在Transformer的整体架构中,源输入序列和目标输出序列都被划分为两个部分,并分别输入到编码器和解码器中。这两个序列都需要进行embedding表示,并添加位置信息。编码组件是由一组结构相同的编码器堆叠而成,解码组件也是由一组结构相同的解码器堆叠而成...