BERT在确定了模型结构是Transformer的编码器之后,再使用上述提到的完形填空和下一句预测这两种预训练方式对模型进行预训练(实质就是调整模型的参数),最终得到一个优秀的模型。 总结 综上,我认为教程中应当把Transformer网络结构和BERT预训练的思想分开来看待,而不是安排在一块,并且还加一句“BERT实际上就是Transformer的...
BERT和hanlp关系 bert和transformer模型的区别 1、transformer 其实transformer最重要的就是,输入的是什莫,输出是什么,主要的组成部分是什么? 现在明白一点输入和另外一个的输入其实相差一位,output主要是为了训练的时候,让下一个知道之前都发生了什么,让下一个输入知道上一输出的内容,为了充分学习这一句话。output是最...
BERT在确定了模型结构是Transformer的编码器之后,再使用上述提到的完形填空和下一句预测这两种预训练方式对模型进行预训练(实质就是调整模型的参数),最终得到一个优秀的模型。 总结 综上,我认为教程中应当把Transformer网络结构和BERT预训练的思想分开来看待,而不是安排在一块,并且还加一句“BERT实际上就是Transformer的...
BERT在确定了模型结构是Transformer的编码器之后,再使用上述提到的完形填空和下一句预测这两种预训练方式对模型进行预训练(实质就是调整模型的参数),最终得到一个优秀的模型。 总结 综上,我认为教程中应当把Transformer网络结构和BERT预训练的思想分开来看待,而不是安排在一块,并且还加一句“BERT实际上就是Transformer的...
BERT是一种预训练语言模型,它的主要贡献是提出了预训练的思想,即使用互联网中海量的文本数据来对模型进行预训练,用户在使用时直接把预训练好的模型拿过来在具体的任务上进行微调训练就可以达到不错的效果。 用学生学习的例子来解释神经网络学习的过程 我们假设不同的网络结构,如CNN,RNN,Transformer等就是一个个的学...