train loss 不断下降,test loss趋于不变,说明网络过拟合;train loss 趋于不变,test loss不断下降,...
在深度学习领域,我们常遇到train loss和val loss的波动问题。当模型训练过程中,若观察到train loss和val loss数值不再发生变化,这表明模型已进入收敛阶段。通常情况下,val loss的稳定比train loss更早,说明模型在验证集上的表现趋于稳定。若val loss稳定后继续在训练,可能预示着过拟合现象的出现。如...
train loss 下降 ↓,val loss:上升/不变:有点过拟合overfitting,可以停掉训练,用过拟合方法如数据增强、正则、dropout、max pooling等。 train loss 稳定,val loss 下降:数据有问题,检查数据标注有没有错,分布是否一直,是否shuffle。 train loss 稳定,val loss 稳定:学习过程遇到瓶颈,可以尝试调小学习率或batch数...
1. 观察损失值的趋势:首先,我们需要观察训练集上的损失值和验证集上的损失值的趋势。如果训练集上的...
loss说明:1、trainloss下降↓,valloss下降↓:训练正常,网络仍在学习,最好的情况。2、trainloss下降↓,valloss:上升/不变:有点过拟合overfitting,可以停掉训练,用过拟合方法如数据增强、正则、dropout、maxpooling等。3、trainloss稳定,valloss下降:数据有问题,检查数据标注有没有错,分布是否...
train loss和test loss的变化趋势分析 变化趋势分析 1.train loss 不断下降,test loss不断下降,说明网络仍在学习;(最好的) 2.train loss 不断下降,test loss趋于不变,说明网络过拟合;(max pool或者正则化) 3.train loss 趋于不变,test loss不断下降,说明数据集100%有问题;(检查dataset) 4.train loss ...
最不理想的情况是loss和val_loss都上升,这可能暗示着网络结构、超参数或数据质量问题,需深入检查和调整。在探索这些概念时,务必记住,loss和val_loss的变化趋势描述的是整体训练过程,而非孤立的点。同时,理解和利用好验证集对于模型的调整和优化至关重要。请确保遵循相应的版权协议,如CSDN博主Trench....
trainloss 不断下降,testloss不断下降,说明网络仍在学习;(最好的)trainloss 不断下降,testloss趋于不变,说明网络过拟合;(max pool或者正则化)trainloss 趋于不变,testloss不断下降,说明数据集100%有问题;(检查dataset 数据集 正则化 过拟合 参数设置
train loss和val loss数值差距大,可能是由于模型过拟合导致的。解决方法有:1. 增加训练数据:增加训练数据可以提高模型的泛化能力,减少过拟合的可能性。2. 减少模型复杂度:减少模型的复杂度,可以减少模型的参数,减少过拟合的可能性。3. 正则化:正则化可以限制模型参数的值,减少过拟合的可能性。4...
Search before asking I have searched the YOLOv5 issues and discussions and found no similar questions. Question Hi, as seen in the graph my val losses are constantly lower than my train losses. Why is that and is val>train a sign for ove...