train loss 不断上升,test loss不断上升,说明网络结构设计不当,训练超参数设置不当,数据集经过清洗...
train loss 下降 ↓,val loss:上升/不变:有点过拟合overfitting,可以停掉训练,用过拟合方法如数据增强、正则、dropout、max pooling等。 train loss 稳定,val loss 下降:数据有问题,检查数据标注有没有错,分布是否一直,是否shuffle。 train loss 稳定,val loss 稳定:学习过程遇到瓶颈,可以尝试调小学习率或batch数...
loss说明:1、trainloss下降↓,valloss下降↓:训练正常,网络仍在学习,最好的情况。2、trainloss下降↓,valloss:上升/不变:有点过拟合overfitting,可以停掉训练,用过拟合方法如数据增强、正则、dropout、maxpooling等。3、trainloss稳定,valloss下降:数据有问题,检查数据标注有没有错,分布是否一...
过拟合特征,一般是训练集上的loss不断下降,而测试集或者验证集上的loss先下降然后再上升。而我画出来的图和题主的图不太符合这个特点。 其他人的回答也有道理,毕竟训练集上的准确率差不多100%了,让人不相信是过拟合太难了。 从经验上来判断就是过拟合了,模型泛化能力不足,train表现很好但val上较差, 解决方法...
1.train_loss 不断下降,val_loss(test_lost) 不断下降 说明网络训练正常,最好情况 2.train_loss 不断下降,val_loss(test_lost) 趋于不变 说明网络过拟合,可以添加dropout和最大池化max pooling 3.train_loss 趋于不变,val_loss(test_lost) 不断下降 ...
如果distribution不一样,那么模型训练学到的training set上的pattern就很难运用到val set,所以导致loss...
train loss和val loss数值差距大,可能是由于模型过拟合导致的。解决方法有:1. 增加训练数据:增加训练数据可以提高模型的泛化能力,减少过拟合的可能性。2. 减少模型复杂度:减少模型的复杂度,可以减少模型的参数,减少过拟合的可能性。3. 正则化:正则化可以限制模型参数的值,减少过拟合的可能性。4...
当loss稳定且val_loss下降,可能意味着数据集有显著问题,需要重新审视。当两者都保持稳定时,可能存在学习瓶颈,这时调整学习率或batch size可能是解决之道。最不理想的情况是loss和val_loss都上升,这可能暗示着网络结构、超参数或数据质量问题,需深入检查和调整。在探索这些概念时,务必记住,loss和val_...
train loss 和 val loss 的关系: Underfitting – val loss 和 train loss 的值都很大 Overfitting – val loss 的值很大 train loss的值很小 Good fit – val loss 的值很小,但是比train loss 的值稍大 Unknown fit*** - val loss 的值很小,train loss 的值很大 ***在一般情况下,train loss 的值...
在深度学习领域,我们常遇到train loss和val loss的波动问题。当模型训练过程中,若观察到train loss和val loss数值不再发生变化,这表明模型已进入收敛阶段。通常情况下,val loss的稳定比train loss更早,说明模型在验证集上的表现趋于稳定。若val loss稳定后继续在训练,可能预示着过拟合现象的出现。如...