***在一般情况下,train loss 的值总是会比 val loss 低一些,不过也有以下例外: train set 比 val set 的数据更难判断 在网络中应用了如 dropout, batch_norm 等层。这是由于keras 在eval 阶段不会启用dropout 等正则化层。 在网络训练的早期,由于前几个batch loss值会比较大,keras train loss的计算方式是...
5. 训练动态:在某些情况下,训练损失可能会暂时性地低于验证损失,这可能是因为训练批次的随机性或学习率调整策略造成的。 这张图显示的是一个良好的训练进程,其中验证损失稳步下降,没有出现明显的过拟合迹象。然而,train_loss和val_loss的不重合并不一定是问题,只要验证损失持续减小,表明模型的泛化能力正在提高。 发...
1.train_loss 不断下降,val_loss(test_lost) 不断下降 说明网络训练正常,最好情况 2.train_loss 不断下降,val_loss(test_lost) 趋于不变 说明网络过拟合,可以添加dropout和最大池化max pooling 3.train_loss 趋于不变,val_loss(test_lost) 不断下降 说明数据集有问题,建议重新选择 4.train_loss 趋于不变...
train loss 下降↓,val loss 下降 ↓:训练正常,网络仍在学习,最好的情况。 train loss 下降 ↓,val loss:上升/不变:有点过拟合overfitting,可以停掉训练,用过拟合方法如数据增强、正则、dropout、max pooling等。 train loss 稳定,val loss 下降:数据有问题,检查数据标注有没有错,分布是否一直,是否shuffle。 t...
loss和val_loss是衡量模型性能的两个关键指标。loss代表模型在训练集上的表现,而val_loss反映的是模型在测试集上的预测误差。理想情况下,loss和val_loss都应同步下降,表明模型正健康地学习和泛化。如果loss下降而val_loss稳定,可能是过拟合,可通过添加Dropout层或减少网络深度来缓解。如果数据集有问题...
在深度学习领域,我们常遇到train loss和val loss的波动问题。当模型训练过程中,若观察到train loss和val loss数值不再发生变化,这表明模型已进入收敛阶段。通常情况下,val loss的稳定比train loss更早,说明模型在验证集上的表现趋于稳定。若val loss稳定后继续在训练,可能预示着过拟合现象的出现。如...
我不确定的是val_loss的缩进,这可能会在打印输出时导致一些问题。一般来说,我会说我对验证有一些困惑: 1)首先,我传递train_loader中的所有批次,并调整训练损失。 2)然后,我开始迭代我的val_loader以对单个批次的不可见数据进行预测,但我在val_losses列表中附加的是模型在val_loader中的最后一批数据上计算的验证...
wandb.log({"train loss": train_epoch_loss,"val loss": val_epoch_loss,"epoch": epoch}) wandb.log({"train acc": train_epoch_acc,"val acc": val_epoch_acc,"epoch": epoch}) wandb.log({"best val acc": best_acc,"epoch": epoch}) ...
loss的变化也很奇怪,一直无法收敛。附图如下(添加训练集,未动验证集): 仅添加训练集后trainloss的变化情况 仅添加训练集valloss的变化情况 请问有可能是因为什么原因呢?有没有好的...训练深度网络模型,刚开始约10epoch的loss下降幅度很大,在大约10个epoch之后,变得非常缓慢。请问是什么问题呢?trainloss随训练时间的...