# TrackNetv2/3_in_3_out/predict3.py L101 model = load_model(load_weights, custom_objects={'custom_loss':custom_loss}) model.save('./mode_save') tensorflow转onnx 直接转会报错Unknown loss function: custom_loss。 修改/home/chg/anaconda3/envs/track/lib/python3.10/site-packages/tf2onnx/tf...
2. TrackNetv2的weighted binary cross entropy loss: 2.1 先看 group truth(一张heatmap)的计算: (每张rbg原图的gt只标注了一个点的x,y ,所以二值化的heatmap上,只有一个类似于圆的区域) 二值化以前: heatmap各点的值 = ( (y - (cy + 1))**2 ) + ( (x - (cx + 1))**2 ) 就是算各...
TrackNetV2的正样本生成方法是基于标注的中心点坐标,以半径r的圆圈赋值1(代表球体)和0(代表背景)。代码示例展示了如何使用genHeatMap函数生成ground truth图。然而,对于模型而言,预测较大区域相比单个像素点更为准确,因此,如何生成更精确的正样本标签值得深入研究。在TrackNetV2的训练过程中,采用了...
Improve this page Add a description, image, and links to thetracknetv2topic page so that developers can more easily learn about it. To associate your repository with thetracknetv2topic, visit your repo's landing page and select "manage topics."...
TrackNetV2_Dataset ├─ train | ├── match1/ | │ ├── ball_trajectory/ | │ │ ├── 1_01_00_ball.csv | │ │ ├── 1_02_00_ball.csv | │ │ ├──… | │ │ └── *_**_**_ball.csv | │ ├── frame/ | │ │ ├── 1_01_00/ | │ │ │ ├──...
tf版代码: 实验记录: 前16个npy文件,在训练集算指标,头6个epoch都是这样,后面比较正常 opt_leo = optimizers.Adam() #代替了原来的 # opt_leo = optimizers.Adadelta( 可能还要调超参 batch_size设成和作者一样,为3,在完整训练集上训,1个epoch后: 比上面的情况好,可能是因为,虽然只有1个epoch,但迭代数...
效果:https://www.youtube.com/watch?v=tJ0a6mvqxb4(v1) First of all, the processing speed is improved from 2.6 FPS (v1) to 31.8 FPS 单次forward的时间,比3in1out长,但1次能处理3帧。 没看出和DeconvNet有什么区别 复现: 1. gen_data.py的batchSize和训练的batchSize没有关系? 待续...
Explore and run machine learning code with Kaggle Notebooks | Using data from Railway Track Fault Detection