"Accuracy: "+str(round((tp+tn)/(tp+fp+fn+tn),)) 召回率(Recall):针对数据集中的所有正例(TP+FN)而言,模型正确判断出的正例(TP)占数据集中所有正例的比例.FN表示被模型误认为是负例但实际是正例的数据.召回率也叫查全率,以物体检测为例,我们往往把图片中的物体作为正例,此时召回率高代表着模型可以...
"Accuracy: "+str(round((tp+tn)/(tp+fp+fn+tn),)) 召回率(Recall):针对数据集中的所有正例(TP+FN)而言,模型正确判断出的正例(TP)占数据集中所有正例的比例.FN表示被模型误认为是负例但实际是正例的数据.召回率也叫查全率,以物体检测为例,我们往往把图片中的物体作为正例,此时召回率高代表着模型可以...
ROC曲线的横轴是FPRate,纵轴是TPRate。设x=FPRate, y=TPRate,设y=x(即表示模型预测正确与预测错误的概率相等),就是下面这个样子,这时候AUC=0.5, 此时类似于一个抛均匀硬币的模型(这种模型结果应该是最差的结果,因为相当于完全随机,毫无预测能力,因为但凡正确率<0.5,错误率>0.5,将该模型结果反过来也能得到一个...
TP(True Positives): 真的正样本 = 【正样本 被正确分为 正样本】 TN(True Negatives): 真的负样本 = 【负样本 被正确分为 负样本】 FP(False Positives): 假的正样本 = 【负样本 被错误分为 正样本】 FN(False Negatives):假的负样本 = 【正样本 被错误分为 负样本】 2. Precision(精度)和 Recal...
1. 什么是 TP、TN、FP、FN? 首先,先来简单定义这四个指标: True Positive (TP):实际为正类的样本被正确地预测为正类。 True Negative (TN):实际为负类的样本被正确地预测为负类。 False Positive (FP):实际为负类的样本被错误地预测为正类(也称为“假阳性”或“误报”)。
FPR=FP/(FP+TN)=1-specify (参考混淆矩阵) FNR(False Negative Rate):假阴性率,即漏诊率,有病检测出没病占真正有病的比例: FNR=FN/(TP+FN)=1-sensitivity=1-recall ROC曲线 按照模型输出的正例预测概率排序,顺序为从高到低,之后将每个概率值作为阈值,得到多个混淆矩阵,对应多对TPR和FPR,将FPR的值作为...
机器学习-基础知识- TP, FN, FP, TN 本文介绍机器学习的一系列基础评估指标。 基础定义 T : True 表示判断正确 F : False 表示判断错误 P : PostIve 表示判断该样本为正样本 N : Negative 表示判断该样本为负样本 指标定义 如果总是记混,按照上述字母顺序翻译出意义即可。
正解TP/FP/TN/FN评价指标 问题 机器学习分类任务中常见的指标有TP/FP/TN/FN四种,初学者往往很难区分这四个概念。本文将采用简洁的方式,清晰的介绍四者之间的区别。 区别 四个 指标中,TP和TN是比较好理解的,FP和FN是比较容易混淆的,因此需要特别留意。
真正例TP、假正例FP、假负例FN和真负例TN 真正例是指模型将正类别样本正确地预测为正类别; 真负例是指模型将负类别样本正确地预测为负类别; 假正例是指模型将负类别样本错误地预测为正类别; 假负例是指模型将正类别样本错误地预测为负类别。 真正例和假正例,举例:狼来了 ...
FP:假正例 FN:假负例 TP:真正例 TN:真负例 二:精确率(Precision),召回率(Recall),准确率(Accuracy) 准确率(Accuracy):这三个指标里最直观的就是准确率: 模型判断正确的数据(TP+TN)占总数据的比例 召回率(Recall):针对数据集中的所有正例(TP+FN)而言,模型正确判断出的正例(TP)占数据集中所有正例的比...