"Accuracy: "+str(round((tp+tn)/(tp+fp+fn+tn),)) 召回率(Recall):针对数据集中的所有正例(TP+FN)而言,模型正确判断出的正例(TP)占数据集中所有正例的比例.FN表示被模型误认为是负例但实际是正例的数据.召回率也叫查全率,以物体检测为例,我们往往把图片中的物体作为正例,此时召回率高代表着模型可以...
True Positive (TP):实际为正类的样本被正确地预测为正类。 True Negative (TN):实际为负类的样本被正确地预测为负类。 False Positive (FP):实际为负类的样本被错误地预测为正类(也称为“假阳性”或“误报”)。 False Negative (FN):实际为正类的样本被错误地预测为负类(也称为“假阴性”或“漏报”...
TP: IoU>0.5的检测框数量(同一Ground Truth只计算一次) FP: IoU<=0.5的检测框,或者是检测到同一个GT的多余检测框的数量 FN: 没有检测到的GT的数量 由前面定义,我们可以知道,要计算mAP必须先绘出各类别PR曲线,计算出AP。而如何采样PR曲线,VOC采用过两种不同方法。 在VOC2010以前,只需要选取当Recall >= 0,...
TPR=TP/(TP+FN)=recall=sensitivity FPR(False Positive Rate):假正例率,即误诊率(没病检测出有病是误诊,有病检测出没病是漏诊),没病检测出有病占整体没病人数的比例。 FPR=FP/(FP+TN)=1-specify (参考混淆矩阵) FNR(False Negative Rate):假阴性率,即漏诊率,有病检测出没病占真正有病的比例: FNR...
在混淆矩阵中,TP、FP、FN和TN是四个关键的指标,它们分别代表不同的分类结果。以下是对这四个指标的详细解释: 一、总体概述 混淆矩阵通过TP(真正例)、FP(假正例)、FN(假负例)和TN(真负例)四个数值,全面反映了分类模型的性能。这四个指标分别代表了模型在不同情况下的分类...
一、TP、TN、FP、FN的记忆。 这几个值的全称分别是: FP:假正例 FN:假负例 TP:真正例 TN:真负例。 一下子记不住也没关系. 接下来介绍一下我是怎么记忆的: 首先看第二个字母,它表示预测的结果(也就是预测为真或预测为假)。 然后看第一个字母,它表示本次预测是否预测对了,为防止歧义,可以理解为猜谜...
1. TP TN FP FN GroundTruth 预测结果 TP(True Positives): 真的正样本 = 【正样本 被正确分为 正样本】 TN(True Negatives): 真的负样本 = 【负样本 被正确分为 负样本】 FP(False Positives): 假的正样本 =
举个栗子, TP:从左到右,全称:True Positive, 即正确的预测为正类。对应下图,正确的预测为正类,说明它实际上是正类,预测对了。没必要死记硬背,只需要知道全称,并按照顺序翻译即可理解。 ... 分类性能评估指标 — 理论篇 — TP、TN、FP、FN,precision、recall、F1、PR曲线,sensitivity、specificity,FPR、TPR...
TP (True Positive) 能够检测到正例,即预测和实际都为P; FP (False Postive) 错误的正例,即误将负例检测为正例,亦即预测为P,实际为N; TN (True Negative) 能够检测到负例,即预测和实际都为N; FN (False Negative) 错误的负例,即误将正例检测为负例,亦即预测为N,实际为P;...