"Accuracy: "+str(round((tp+tn)/(tp+fp+fn+tn),)) 召回率(Recall):针对数据集中的所有正例(TP+FN)而言,模型正确判断出的正例(TP)占数据集中所有正例的比例.FN表示被模型误认为是负例但实际是正例的数据.召回率也叫查全率,以物体检测为例,我们往往把图片中的物体作为正例,此时召回率高代表着模型可以...
其中TP+FN+FP+TN=样例总数。 混淆矩阵 二、P、R P:查准率、精确率(Precision):所有被模型预测为正类的样本中,实际为正类的样本所占比例。 P=TPTP+FP 它衡量的是模型预测为正类的准确性,高查准率意味着较少的假正例(FP),即模型在预测正类时更加准确。 R:查全率、召回率(Recall):所有实际为正类的样本中...
True Positive (TP):如果模型预测某人患有癌症,且这个人确实患有癌症,那么这是一个真阳性。 True Negative (TN):如果模型预测某人没有癌症,且这个人确实没有癌症,那么这是一个真阴性。 False Positive (FP):如果模型预测某人患有癌症,但实际上这个人没有癌症,这是一个假阳性(误报)。 False Negative (FN):...
specify=TN/(TN+FP) PPV(Positive Predictive Value):阳性预测值,等同于精确率,预测为正例的人中,真的正例所占比例。 PPV=TP/(TP+FP)=precision NPV(Negative predictive value):阴性预测值,预测为负例的人中,真的负例所占比例,等同于负例的精确率 NPV=TN/(TN+FN) TPR(True Positive rate):真正例率,等...
混淆矩阵通过TP(真正例)、FP(假正例)、FN(假负例)和TN(真负例)四个数值,全面反映了分类模型的性能。这四个指标分别代表了模型在不同情况下的分类结果,是评估模型准确度和召回率等重要指标的基础。 二、详细解释 TP(True Positive,真正例) 定义:实际为正例,且预测也为正...
TP : (T)该判断正确,§判断该样本为正样本(事实上样本为正) TN : (T)该判断正确,(N)判断该样本为负样本(事实上样本为负) FP : (F)该判断错误,§判断该样本为正样本(事实上样本为负) FN : (F)该判断错误,(N)判断该样本为负样本(事实上样本为正) ...
TP:模型预测是好果,预测正确(实际是好果,而且也被模型预测为好果) TN:模型预测是坏果,预测正确(实际是坏果,而且也被模型预测为坏果) FP:模型预测是好果,预测错误(实际是坏果,但是被模型预测为了好果) FN:模型预测是坏果,预测错误(实际是好果,但是被模型预测为了坏果) 三、查准率、查全率 (1)查准率、查全...
FP,False Positive,指的是分类器预测为正样本但实际为负样本的错误预测数量。简单来说,FP就是误报的负样本。TN,True Negative,表示分类器正确预测为负样本的实例数量。即实际为负样本且被分类器识别为负样本的案例。FN,False Negative,是分类器预测为负样本但实际为正样本的错误预测数量。简而言之...
这些概念分别是:TP、FN、FP、TN,查全率和查准率,P-R曲线和ROC曲线 1、混淆矩阵中的:TP FN FP TN 其实很简单 真实情况有两种可能:正(T)和反(F); 预测结果有两种可能:积极(P)和消极(N) 但是比较绕的是对于这里的P和N的理解,看到一个很好的举例,借用一下: ...
TP (True Positive) 能够检测到正例,即预测和实际都为P; FP (False Postive) 错误的正例,即误将负例检测为正例,亦即预测为P,实际为N; TN (True Negative) 能够检测到负例,即预测和实际都为N; FN (False Negative) 错误的负例,即误将正例检测为负例,亦即预测为N,实际为P;...