defto_pil_image(pic,mode=None):"""Convert a tensor or an ndarray to PIL Image.See :class:`~torchvision.transforms.ToPILImage` for more details.Args:pic (Tensor or numpy.ndarray): Image to be converted to PIL Im
# image_numpy转换成 tensor:归一化(不影响图片的效果) image_tensor=transforms.ToTensor()(image_numpy) print("image_shape: ",image_tensor.shape) print("image_dtype: ",image_tensor.dtype) print("image_type: ",type(image_tensor)) print(image_tensor[0]) # 无法显示图片,Pytorch tensor的维度不...
0.5, 0.5))(img_tensor) # 再把标准化后的Tensor转化为图像 img_norm = transforms.ToPILImage...
这里在执行的时候会按照顺序执行,先执行transforms.RandomCrop(32, padding=4),最后执行transforms.Normalize((0.4914, 0.4822, 0.4465), (0.229, 0.224, 0.225)),所以这里一定要注意类型的问题,这些方法有的使用的是Tensor类型,有些是PIL.Image的类型。具体的可以看后面的使用 class torchvision.transforms.ToTensor 把...
ToPILImage:将Tensor转换为PIL图像。 ToTensor:将PIL图像或numpy数组转换为Tensor。 Lambda:允许自定义转换函数。 RandomApply和RandomChoice:随机应用或选择一个预处理操作。 RandomOrder:随机打乱预处理操作的顺序。参数设置建议: 大多数transforms的参数设置相对宽松,可以直接使用默认值。
tensor = F.to_tensor(pic) return tensor def __repr__(self): return self.__class__.__name__ + '()' Expand Down Expand Up @@ -223,7 +229,12 @@ def forward(self, tensor: Tensor) -> Tensor: Returns: Tensor: Normalized Tensor image. """ return F.normalize(tensor, self.mean,...
Here's the list of nvidia libs and versions that I had in my virtual environment to get past initial errors from both jax and torch and successfully create CUDA tensors on each lib (again, I haven't actually run any ops so its hard to conclude that this works): ...
`torchvision.transforms.ToPILImage(mode=None)`将数据转换为PIL图像。`torchvision.transforms.ToTensor`将数据转换为Tensor。`torchvision.transforms.Lambda(lambd)`允许自定义转换函数。关于参数设置,通常参考前人的工作,无需过度纠结,标准化的mean和std需要根据实际数据集自行计算。除了标准化外,大多数...
功能:把一个取值范围是[0,255]的PIL.Image或者shape为(H,W,C)的numpy.ndarray,转换成形状为[C,H,W],取值范围是[0,1.0]的torch.FloadTensor 9、torchvision.transforms.ToPILImage 功能:将shape为(C,H,W)的Tensor或shape为(H,W,C)的numpy.ndarray转换成PIL.Image,值不变。
img_tensor = transforms.ToTensor()(img) # 转换成tensor print(img_tensor) class torchvision.transforms.ToPILImage 将shape为(C,H,W)的Tensor或shape为(H,W,C)的numpy.ndarray转换成PIL.Image,值不变。 通用变换 class torchvision.transforms.Lambda(lambd) ...