torchvision.models.resnet50(pretrained=False, ** kwargs) 构建一个ResNet-50模型 pretrained (bool) – True, 返回在ImageNet上训练好的模型。 torchvision.models.resnet101(pretrained=False, ** kwargs) 构建一个ResNet-101 模型. pretrained (bool) – True, 返回在ImageNet上训练好的模型。
'resnet152']model_urls={'resnet18':'https://download.pytorch.org/models/resnet18-5c106cde.pth','resnet34':'https://download.pytorch.org/models/resnet34-333f7ec4.pth','resnet50':'https://download.pytorch.org/models/resnet50-19c8e357.pth','resnet101':'https://download.pytorch.o...
torchvision.models.resnet101(pretrained=False, ** kwargs) Constructs a ResNet-101 model. pretrained (bool) –True, 返回在ImageNet上训练好的模型。 torchvision.models.resnet152(pretrained=False, ** kwargs) Constructs a ResNet-152 model. pretrained (bool) –True, 返回在ImageNet上训练好的模型。
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet...
importtorch.nnasnnimportmathimporttorch.utils.model_zooasmodel_zoo__all__=['ResNet','resnet18','resnet34','resnet50','resnet101','resnet152']model_urls={'resnet18':'https://download.pytorch.org/models/resnet18-5c106cde.pth','resnet34':'https://download.pytorch.org/models...
models.resnet18(pretrained=False, **kwargs)ResNet-34:torchvision.models.resnet34(pretrained=False, **kwargs)ResNet-50:torchvision.models.resnet50(pretrained=False, **kwargs)ResNet-101:torchvision.models.resnet101(pretrained=False, **kwargs)ResNet-152:torchvision.models.resnet152...
官方博客写到,torchvision 0.3新加入了FCN和DeepLabV3分割模型,用了ResNet50和ResNet101骨架。ResNet101有预训练的权重可用,是在COCO train2017数据集的一个子集上训练的,20个类别和Pascal VOC一致:检测模型 torchvision 0.3新包含了预训练的Faster R-CNN、Mask R-CNN以及Keypoint R-CNN。官方还提到,各种...
torchvision.models这个包中包含alexnet、densenet、inception、resnet、squeezenet、vgg等常用经典的网络结构,并且提供了预训练模型,可以通过简单调用来读取网络结构和预训练模型。 今天我们来解读一下ResNet的源码实现。如果对ResNet不是很了解 可以查看这里的论文笔记 ...
无独有偶,torchvision团队也在近日发布了他们在优化ResNet模型训练的探索成果(How to Train State-Of-The-Art Models Using TorchVision’s Latest Primitives):ResNet使用改进的训练策略可以在ImageNet数据集上top-1 accuracy达到80.7(+4.5),而且这些策略在应用在其它模型上也可以得到更优的结果,如ResNet101可以从...
import torchvision.models as models alexnet = models.alexnet() # AlexNet vgg16 = models.vgg16() # VGG16 resnet18 = models.resnet18() # ResetNet模型 googlenet = models.googlenet() # googlenet inception = models.inception_v3() # inception ...