1 toch.save() [source] 保存一个序列化(serialized)的目标到磁盘。函数使用了Python的pickle程序用于序列化。模型(models),张量(tensors)和文件夹(dictionaries)都是可以用这个函数保存的目标类型。 torch.save(obj, f, pickle_module=<module'...'>, pickle_protocol=2) 示例 保存整个模型 torch.save(model,...
torch.save(obj, file): 作用:将PyTorch模型保存到文件中。 参数: obj: 要保存的对象,可以是模型、张量或字典。 file: 要保存到的文件路径。 示例: torch.save(model.state_dict(),'model.pth') torch.load(file): 作用:从文件中加载保存的PyTorch模型。 参数: file: 要加载的文件路径。 返回值:加载的对...
1torch.save()[source] 保存一个序列化(serialized)的目标到磁盘。函数使用了Python的pickle程序用于序列化。模型(models),张量(tensors)和文件夹(dictionaries)都是可以用这个函数保存的目标类型。 torch.save(obj, f, pickle_module=<module '...'>, pickle_protocol=2) 示例: 保存整个模型: torch.save(model...
torch.save({'x': x, 'y': y}, 'xy_dict.pt') xy = torch.load('xy_dict.pt') xy 1. 2. 3. 输出: {'x': tensor([1., 1., 1.]), 'y': tensor([0., 0., 0., 0.])} 1. 2. 读写模型 2.1state_dict 在PyTorch中,Module的可学习参数(即权重和偏差),模块模型包含在参数中(...
torch.save(model.state_dict(), 'save.pt') 2 torch.load() [source] 用来加载模型。torch.load() 使用 Python 的 解压工具(unpickling)来反序列化 pickled object 到对应存储设备上。首先在 CPU 上对压缩对象进行反序列化并且移动到它们保存的存储设备上,如果失败了(如:由于系统中没有相应的存储设备),就会...
torch.nn.Module.load_state_dict(state_dict, strict=True) 参数 描述 state_dict 保存 parameters 和 persistent buffers 的字典 strict 可选,bool型。state_dict 中的 key 是否和 model.state_dict() 返回的 key 一致。 栗子 torch.save(model,'save.pt') ...
torch.save / torch.load 如果模型是在 GPU 上训练的,但在 CPU 上加载,需要使用 map_location 参数将模型转移到 CPU 上。反之亦然。 torch.save 用于将 PyTorch 对象保存到磁盘文件中。它可以保存各种类型的对象,包括模型、张量、字典等。 torch.save(obj, f, pickle_module=pickle, pickle_protocol=None) ob...
在Torch中,保存和加载模型参数可以通过使用torch.save()和torch.load()函数来实现。 保存模型参数: # 保存模型参数 torch.save(model.state_dict(), 'model.pth') 复制代码 加载模型参数: # 加载模型参数 model.load_state_dict(torch.load('model.pth')) 复制代码 在保存模型参数时,我们使用model.state_...
在PyTorch中,模型的保存和加载主要通过torch.save()和torch.load()函数以及torch.nn.Module.load_state_dict()方法实现。常用的文件后缀有.pt和.pth。以下是这些方法的简要概述:1. torch.save()函数:用于将模型、张量或字典序列化到磁盘,支持保存整个模型(包括训练好的权重)和仅权重部分。2. ...
使用torch.save(model.state_dict(), PATH)即可。 2. 保存模型时包含的内容 保存整个模型:这种方式保存的内容包括模型的结构和参数。这意味着在加载模型时,不需要重新定义模型结构。 仅保存模型参数:这种方式保存的内容仅包括模型的参数,即权重和偏置。在加载模型时,需要重新定义模型结构,然后使用load_state_dict...