ranks = ranks.reshape(-1)return100* (ranks <=5).sum() / float(ranks.shape[0])ifmetric =='r10':# ranks = ranks.view(-1)ranks = ranks.reshape(-1)# return 100*torch.sum(ranks <= 10).data[0]/float(ranks.size(0))return100* (ranks <=10).sum() / float(ranks.shape[0])ifme...
reshape(size[0], size[1], size[2], size[3]) # for attention visualization # print(torch.cuda.memory_allocated() / 1024 / 1024) attention = kernel.data attention = attention.requires_grad_(False) attention = torch.reshape(attention, (size[0], -1, 10, 10)) # attention = F.conv_...
(2* torch.randint(0,2, (self.input_dim,)) -1).float() ] indices1 = torch.cat((torch.arange(input_dim, dtype=torch.long).reshape(1,-1), self.h_[0].reshape(1,-1)), dim=0) indices2 = torch.cat((torch.arange(input_dim, dtype=torch.long).reshape(1,-1), self.h_[1].re...
6.4.1 torch.cat:在已有的维度上进行拼接。 6.4.2 torch.stack:在现有的维度上进行stack,会增加一个维度。 6.5 维度升维(非常重要) 6.5.1 torch.reshape vs torch.view 6.5.2 torch.unsqueeze:添加维度 6.5.3 数组新增一维的方法 6.6 维度降维(非常重要) 6.6.1 torch.squeeze:去除维度为1的 6.6.2 torch....
mul, shape, 1) if backend == "torch": import torch data = torch.multinomial(torch.ones(output.dtype), num_elements, replacement=True) else: data = np.random.choice(output.dtype, num_elements, replace=True) data = data.reshape(shape) return Tensor(data, inputs, output.dtype) ...
形状操作:view(),reshape(),squeeze(),unsqueeze() 索引和切片 聚合操作:sum(),mean(),max(),min() 与NumPy的交互 2.4Tensor与NumPy间的转换 Tensor转NumPy:numpy() NumPy数组转Tensor:from_numpy() 2.5设备间的Tensor操作 CPU与GPU间的移动:to(),cuda(),cpu() ...
1import torch 2import torch.nn as nn 3import torch.nn.functional as F 接下来,我们将使⽤torch.nn.Module来构建我们的NN 请记住,我们将尝试构造出Lenet-5架构,代码如下:代码详解:line3 在__init__函数中,我们⾸先调⽤了super()函数。这确保了我们继承了nn.Module中的所有⽅法。现在我们就...
torch.normal(mean=torch.arange(4.),std=torch.arange(1.,0.6,-0.1)).reshape(2,2) 1. 期望值也就是均值μ=0,即曲线图象对称轴为Y轴,标准差σ=1条件下的正态分布,记为N(0,1)。 标准的正太分布 均值和标准差求解 计算均值。 把所有数值相加,再除以总体大小: ...
pyplot.imshow(x_train[0].reshape((28, 28)), cmap="gray") print(x_train.shape) 1. 2. 3. 4. 5. 输出为: (50000, 784) 1. PyTorch使用tensor而不是 NumPyarray,所以我们需要将其转换。 import torch x_train, y_train, x_valid, y_valid = map( ...
reshape(bbox_pred, [bbox_pred.shape[0], -1]) if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred pred_boxes = bbox_transform_inv( torch.from_numpy(boxes), torch.from_numpy(box_deltas)).numpy() pred_boxes = _clip_boxes(pred_boxes, im.shape)...