If you do not know which optimizer to use, start with the built in SGD/Adam. Once the training logic is ready and baseline scores are established, swap the optimizer and see if there is any improvement. A2GradExp importtorch_optimizerasoptim# model = ...optimizer=optim.A2GradExp(model.pa...
9 labels Sort bug Something isn't working documentation Improvements or additions to documentation duplicate This issue or pull request already exists enhancement New feature or request good first issue Good for newcomers help wanted Extra attention is needed invalid This doesn't...
Reference Code:https://github.com/NVIDIA/DeepLearningExamples/ PID import torch_optimizer as optim # model = ... optimizer = optim.PID( m.parameters(), lr=1e-3, momentum=0, dampening=0, weight_decay=1e-2, integral=5.0, derivative=10.0, ) optimizer.step() ...
warn("optimizer contains a parameter group with duplicate parameters; " "in future, this will cause an error; " "see github.com/pytorch/pytorch/issues/40967 for more information", stacklevel=3) param_set = set() for group in self.param_groups: param_set.update(set(group['params'])) ...
TorchOptimizer通过集成贝叶斯优化和并行计算技术,为PyTorch Lightning模型提供了高效的超参数优化解决方案。其与PyTorch Lightning生态系统的深度集成和灵活的配置体系,使其成为深度学习工程中的实用工具。 本框架适用于各种规模的深度学习项目,相比传统的网格搜索和随机搜索方法,能够更高效地确定最优超参数配置。 代码: gith...
1.1 优化器torch.optim.Optimizer类 1.1.1 主要参数 params:需要通过优化器学习(即:优化,或训练)的参数,一般通过model.parameters()传入 每一个模型的一组学习参数被称为一个param_group lr:学习速率,即每一 epoch 模型参数更新的程度 weight_decay:权重衰减 Weight Decay ...
classStepRunner:def__init__(self, net, loss_fn, accelerator=None, stage ="train", metrics_dict = None, optimizer = None, lr_scheduler = None ):self.net,self.loss_fn,self.metrics_dict,self.stage = net,loss_fn,metrics_dict,stage self.optimizer,self.lr_scheduler = optimizer,lr_...
optimizer.param_groups:列表,每个元素都是一个字典,每个元素包含的关键字有:'params', 'lr', 'betas', 'eps', 'weight_decay', 'amsgrad',params类是各个网络的参数放在了一起。这个属性也继承自torch.optim.Optimizer父类。 由于上述两个属性都继承自所有优化器共同的基类,所以是所有优化器类都有的属性,并且...
这个实现改编自github repo: bckenstler/CLR。 参数: optimizer (Optimizer)– 包裹的优化器。 base_lr (float or list)– 初始学习率,即每个参数组循环的下边界。 max_lr (float or list)– 循环中各参数组的上学习速率边界。在功能上,它定义了周期振幅(max_lr - base_lr)。在任何周期的lr是base_lr...
distributed.optim import ZeroRedundancyOptimizerifargs.enable_zero_optim:print('=> using ZeroRedundancyOptimizer')optimizer = torch.distributed.optim.ZeroRedundancyOptimizer(model.parameters(),optimizer_class=torch.optim.SGD,lr=args.lr,momentum=args.momentum,weight_decay=args.weight_decay)else:optimizer =...