on cpu: importtorch# Use the torch.nn.functional.max_unpool2d functioninput_tensor=torch.tensor([[[-0.2,-0.3], [-0.4,-0.5]]])indices=torch.tensor([[[1,0], [1,0]]])result=torch.nn.functional.max_unpool2d(input_tensor,indices,kernel_size=(2,2))print(result)# tensor([[[-0.5000...
F.max_pool2d(input, kernel_size):应用二维最大池化。F.avg_pool2d(input, kernel_size):应用二维平均池化。归一化:F.batch_norm(input, running_mean, running_var):应用批归一化。F.layer_norm(input, normalized_shape):应用层归一化。torch.nn.functional 模块中的函数通常是无状态的,这意味着它们...
在PyTorch中,腐蚀操作可以通过torch.nn.functional.max_pool2d函数来实现。虽然这个函数通常用于最大池化操作,但通过设置适当的参数,它可以用来模拟腐蚀操作。具体来说,我们需要将输入图像取反(即将亮区域变为暗区域,暗区域变为亮区域),然后应用最大池化操作,最后再取反回来。这样,最大池化操作实际上就变成了腐蚀操作。
The following are 30 code examples of torch.nn.functional.max_pool2d(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available fun...
torch.nn.functional.lp_pool2d(input, norm_type, kernel_size, stride=None, ceil_mode=False) 在由几个输入平面组成的输入信号上应用1D自适应最大池化。 有关详细信息和输出形状,请参阅AdaptiveMaxPool1d。 参数:-output_size– 目标输出大小(单个整数) -return_indices– 是否返回池化的指数 ...
torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) 在由几个输入平面组成的输入图像上应用2D卷积。有关详细信息和输出形状,查看Conv2d。参数: input– 输入的张量 (minibatch x in_channels x iH x iW) weight– 过滤器 (out_channels, in_channels/...
torch.nn.functional.max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)source对由几个输入平面组成的输入进行2D最大池化。 有关详细信息和输出形状,参考MaxPool2dtorch.nn.functional.max_pool3d(input, kernel_size, stride=None, padding=0, ...
torch.nn.functionaltorch.nn.functional.adaptive_avg_pool1d()torch.nn.functional.adaptive_avg_pool2d()torch.nn.functional.adaptive_avg_pool3d()torch.nn.functional.adaptive_max_pool1d()torch.nn.functional.adaptive_max_pool2d()torch.nn.functional.adaptive_max_pool3d()torch.nn.functional.affine_grid...
torch.nn.functional.conv2d(input,weight,bias=None,stride=1,padding=0,dilation=1,groups=1) 没有学习参数的(eg.maxpool,loss_func,activation func)等根据个人选择使用nn.functional.xxx或nn.xxx 关于dropout层,推荐使用nn.xxx。因为一般情况下只有训练时才用dropout,在eval不需要dropout。使用nn.Dropout,在调用...
torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) 对几个输入平面组成的输入信号应用2D卷积。 有关详细信息和输出形状,请参见Conv2d。 参数: - input – 输入张量 (minibatch x in_channels x iH x iW) ...