代码 引入一个库: 假如是一个四分类任务,batch为2(只是为了显示简单,举个例子罢了) 其实根据这个模型预测出来就是, 第一个样本预测的类别是1, 第二个样本预测的类别是2。 这里我们假...pytorch中交叉熵函数torch.nn.CrossEntropyLoss()怎么加入权重 关于交叉熵函数torch.nn.CrossEntropyLoss的基本用法
1.参数 torch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction='mean',label_smoothing=0.0) 最常用的参数为 reduction(str, optional) ,可设置其值为 mean, sum, none ,默认为 mean。该参数主要影响多个样本输入时,损失的综合方法。mean表示损失为多个样本的平均值...
torch.nn.CrossEntropyLoss 是PyTorch 中用于多分类问题的损失函数。它结合了 nn.LogSoftmax() 和nn.NLLLoss()(负对数似然损失)在单个类中。输入是对数概率(通常是神经网络的原始输出),目标类别索引从 0 到 C-1,其中 C 是类别的数量。 2. torch.nn.CrossEntropyLoss 的主要参数 ...
torch.nn.CrossEntropyLoss 1 classtorch.nn.CrossEntropyLoss(weight=None, size_average=True, ignore_index=-100, reduce=True) 我这里没有详细解读这个损失函数的各个参数,仅记录一下在sru中涉及到的。 sru中代码如下 1 criterion = nn.CrossEntropyLoss(size_average=False) 根据pytorch的官方文档 我得出的理...
torch.nn.CrossEntropyLoss()使用注意 CrossEntropyLoss(将 nn.LogSoftmax() 和 nn.NLLLoss() 结合在一个类中)一般用于计算分类问题的损失值,可以计算出不同分布之间的差距。 一般的书写格式为: 注意:输入的label(存放类别的Tensor)必须是长整型的Tensor,使用方法如下 举例说明(三分类问题): 通过预测值Y_pred....
torch.nn.functional.cross_entropy() 是基于 torch.nn.functional.log_softmax 和torch.nn.functional.nll_loss 实现的: def cross_entropy(input, target, weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean', label_smoothing=0.0): log_prob = F.log_softmax(input, dim...
torch.nn.CrossEntropyLoss(weight=None,ignore_index=-100, reduction='mean') 参数: weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度。
问导入transfomers库时torch.nn.CrossEntropyLoss().ignore_index崩溃EN来源 | OSCHINA 社区、作者 | PostgreSQLChina 链接:https://my.oschina.net/postgresqlchina/blog/5568852 在使用 PostgreSQL 的时候,我们某些时候会往库里插入大量数据,例如,导入测试数据,导入业务数据等等。本篇文章介绍了在导入大量数据时...
eps: float = 1e-6, reduction: str = "mean", ) -> Tensor: r"""Gaussian negative log likelihood loss. See :class:`~torch.nn.GaussianNLLLoss` for details. Args: input: expectation of the Gaussian distribution. target: sample from the Gaussian distribution. ...
torch.nn.CrossEntropyLoss(*weight=None*, *size_average=None*, *ignore_index=- 100*, *reduce=None*, *reduction='mean'*, *label_smoothing=0.0*) torch.nn.functional.cross_entropy(*input*, *target*, *weight=None*, *size_average=None*, *ignore_index=- 100*, *reduce=None*, *reduction...