torch.max(X,dim=1)是对行取最大值 dim=1,表面上感觉时对列取最大值,测试一下: X = torch.tensor([[1.0, 1.0], [-1.0, -1.0]]) result,indices = torch.max(X,dim=1) print(result) print(indices) 1. 2. 3. 4. 5. tensor([ 1., -1.]) 如果是对列取最大值,结果应该都是1,因此是...
(1)torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号; (2)dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index。 二、栗子 # -*- coding: utf-8 -*- """ Created on Fri J...
elu(self.out_att(x, adj)) return F.log_softmax(x, dim=1) 5.6 定义模型和参数 model = GAT(nfeat=features.shape[1], # 定义模型 nhid=args.hidden, nclass=int(labels.max()) + 1, dropout=args.dropout, nheads=args.nb_heads, alpha=args.alpha) optimizer = torch.optim.Adam(model....
torch.max(input,dim,keepdim=False,*,out=None) 输入input(二维)张量,当dim=0时表示找出每列的最大值,函数会返回两个tensor,第一个tensor是每列的最大值,第二个tensor是每列最大值的索引;当dim=1时表示找出每行的最大值,函数会返回两个tensor,第一个tensor是每行的最大值;第二个tensor是每行最大值的...
x_value_index = torch.max(x, dim=1, keepdim=True)print(x_value_index)>>>torch.return_types.max( values=tensor([ [[0.5524,0.2290,0.4652,0.4948,0.7163]], [[0.4045,0.5833,0.7844,0.5605,0.6278]], [[0.9522,0.7801,0.5938,0.1807,0.8103]] ...
当dim=1时, 是对某一维度的列进行softmax运算,和为1 当dim=2时, 是对某一维度的行进行softmax...
torch.argmax()函数 argmax函数:torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号,dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index。 例如
(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 2 Frequency boost: enabled CPU(s) scaling MHz: 67% CPU max MHz: 3200.0000 CPU min MHz: 1550.0000 BogoMIPS: 6387.18 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx ...
dim() - gamma.dim() ret = [] for i in range(x1.dim()): if i < rstd_dim: ret.append(x1.size(i)) else: ret.append(1) rstd = torch.empty(ret, dtype=torch.float32, device='meta') return (torch.empty_like(x1, dtype=x1.dtype), torch.empty_like(rstd), ...
output = F.log_softmax(x, dim=1) return output def train(model: CNN, train_loader: DataLoader, val_loader: DataLoader, optimizer: torch.optim.Optimizer, epoch: int, device: str): """Training loop. Args: model (CNN): model to train, in this case the CNN. ...