近日在搞wavenet,期间遇到了一维卷积,在这里对一维卷积以及其pytorch中的API进行总结,方便下次使用 之前对二维卷积是比较熟悉的,在初次接触一维卷积的时候,我以为是一个一维的卷积核在一条线上做卷积,但是这种理解是错的,一维卷积不代表卷积核只有一维,也不代表被卷积的feature也是一维。一维的意思是说卷积的方向是一维...
import torch # 创建一个示例的浮点数张量 float_tensor = torch.tensor([1.5, 2.7, 3.2], dtype=torch.float32) # 将浮点数张量转换为整数类型(int64) int_tensor = float_tensor.to(torch.int64) print("浮点数张量:", float_tensor) print("整数类型张量:", int_tensor) 在这个示例中,我们首先创建...
size (int...)– a sequence of integers defining the shape of the output tensor. out (Tensor, optional)– the output tensor. Example: 代码语言:javascript 代码运行次数:0 运行 AI代码解释 >>> torch.normal(2, 3, size=(1, 4)) tensor([[-1.3987, -1.9544, 3.6048, 0.7909]]) ...
(%19,%input)%12:int=prim::Constant[value=1]()#D:/python/pytorch_openvino_demo/ch5/faster_rcnn2onnx.py:112:0%13:Float(3:4,4:1,requires_grad=1,device=cpu)=aten::add(%21,%h,%12)#D:/python/pytorch_openvino_demo/ch5/faster_rcnn2onnx.py:112:0%14:Float(3:4,4:1,requires_...
Traceback (most recent call last): File "examples/export_int8_model.py", line 10, in from smoothquant.opt import Int8OPTForCausalLM File "", line 259, in load_module File "/root/anaconda3/envs/smoothquant/lib/python3.8/site-packages/smoo...
# Torch Code: torch.IntTensor([1,2,3,4,5,6,7,8]) #output: #tensor([1, 2, 3, 4, 5, 6, 7, 8], dtype=torch.int32) # PaddlePaddle Code: paddle.to_tensor([1,2,3,4,5,6,7,8.8],dtype='int32') #output: #Tensor(shape=[8], dtype=int32, place=Place(cpu), stop_...
n (int) – 上边界。(不包含)torch.randint(low=0, high, size, out=None, requires_grad=False)返回一个张量,该张量填充了在[low,high)均匀生成的随机整数。张量的形状由可变的参数大小定义。从离散正态分布中随机抽样torch.normal(means, std, out=None) →→ Tensor...
(3,4) torch.zeros(2,3) torch.ones(2,3) torch.manual_seed(1998) torch.rand(4,4) torch.rand_like(x) torch.tensro([3,4]) torch.one((2,3),dtype=torch.int16) torch.zeros(2,2)+1 torch.ones(2,2)*3 torch.rand(3,4)**4 # broadcasting torch.rand(3,4)*(torch.rand(3,4)*...
我们可以看到[21]tensor core支持的数据格式越来越丰富,在大模型对算力需求极其旺盛的情况下,fp8、int8、int4等格式也得到快速发展。 7.1 tf32 Ampere架构引入tf32格式[22],tf32是一种中间数据格式,使用tensor core时,默认会转成tf32格式然后累加和输出结果为fp32格式,成为cudnn默认的数据格式[23] ...
#saving jit_sample = (batch_x['input_ids'].int().to(device), batch_x['attention_mask'].int().to(device)) model.eval() model.to(device) module = torch.jit.trace(model, jit_sample) torch.jit.save('model_jit.pt') #loading model = torch.jit.load('model_jit.pt', map_location=...