We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filter your results more quickly Cancel Create saved search Sign in Sign up Reseting focus {...
is LLM-Pruner integrated in Torch-pruning? #443 openedNov 29, 2024byHrayo712 AttributeError: 'BboxLoss' object has no attribute 'dfl_loss' #442 openedNov 28, 2024by1343464520 Qwen2.5-7b 剪枝推理报错 #441 openedNov 28, 2024byzeze813 ...
A code generation system for returning transformed code back to the host language’s ecosystem Case studies in how torch.fx has been used in practice to develop features for performance optimization, program analysis, device lowering, and more 上述就是FX的功能组件介绍,简单来说就是可以trace你的nn....
A code generation system for returning transformed code back to the host language’s ecosystem Case studies in how torch.fx has been used in practice to develop features for performance optimization, program analysis, device lowering, and more 上述就是FX的功能组件介绍,简单来说就是可以trace你的nn....
// This is a regular attribute assignment, of the form: // foo : Tensor attributes.push_back(assign); } } } break; case TK_SUBSCRIPT: { // This is a special attribute assignment where the attribute // is not a valid python, identifier. Looks like: // __annotations__...
虽然图只有 2 条边,仍需要定义 4 个索引对来考虑所有边的方向。可以随时打印 data 对象来获取其 attribute 和 shape 的简要信息。 注意edge_index中边的存储方式,有两个list,第 1 个list是边的起始点,第 2 个list是边的目标节点。注意与下面的存储方式的区别。
found_infs = [found_inf.to(device=_scale.device, non_blocking=True) for state in self._per_optimizer_states.values() for found_inf in state["found_inf_per_device"].values()] assert len(found_infs) > 0, "No inf checks were recorded prior to update." found_inf_combined = found_...
The parameter can be accessed as an attribute using given name. Parameters name(string) – name of the parameter. The parameter can be accessed from this module using the given name param(Parameter) – parameter to be added to the module. ...
It also has an attribute ctx$needs_input_grad as a named list of booleans representing whether each input needs gradient. E.g., backward() will have ctx$needs_input_grad$input = TRUE if the input argument to forward() needs gradient computated w.r.t. the output. See AutogradContext ...
The parameter can be accessed as an attribute using given name. Parameters name (string)– name of the parameter. The parameter can be accessed from this module using the given name param (Parameter)– parameter to be added to the module. requires_grad_(requires_grad=True)[source] Change...