"f1_score": F1Score(task="multiclass", num_classes=1000), } # Move all metrics to the device # 将所有指标移动到设备 metrics= {name: metric.to(device) forname, metricinmetrics.items()} 接下来,定义一个 PyTorch Profiler 实例,以及一个控制标志,用于启用或禁用性能分析。 fromtorchimportprofiler...
定义了一组来自 TorchMetrics 的标准指标,以及一个控制标志,用于启用或禁用指标计算。 fromtorchmetricsimport ( MeanMetric, Accuracy, Precision, Recall, F1Score, ) ## toggle to enable/disable metric collection ## 切换以启用/禁用指标收集 capture_metrics=False ifcapture_metrics: metrics= { "avg_loss":...
"recall": Recall(task="multiclass", num_classes=1000), "f1_score": F1Score(task="multiclass", num_classes=1000), } # Move all metrics to the device # 将所有指标移动到设备 metrics= {name: metric.to(device) forname, metricinmetrics.items()} 1. 2. 3. 4. 5. 6. 7. 8. 9. 10...
"recall": Recall(task="多类别", num_classes=1000), "f1_score": F1Score(task="多类别", num_classes=1000), } # 将指标移到设备上 metrics = {name: metric.to(device) for name, metric in metrics.items()} 接下来,我们定义一个PyTorch Profiler实例,以及一个控制开关,允许我们启用或禁用性能分析。
yp, yt = predict_dl(model, val_dl)print("Loss: ", r['loss'],"\nAccuracy: ", r['accuracy'],"\nF-score: ", f1_score(yt, yp, average='micro')) Loss:2.0203850269317627Accuracy:0.7619398832321167F-score:0.7586644125105664 该模型在CPU上训练约3分钟,准确率为76.19%。
F1Score, ) # toggletoenable/disablemetric collection # 切换以启用/禁用指标收集capture_metrics=Falseifcapture_metrics: metrics= {"avg_loss": MeanMetric(),"accuracy": Accuracy(task="multiclass",num_classes=1000),"precision": Precision(task="multiclass",num_classes=1000),"recall": Recall(task=...
使用Torchmetrics快速进行验证指标的计算 TorchMetrics可以为我们提供一种简单、干净、高效的方式来处理验证指标。TorchMetrics提供了许多现成的指标实现,如Accuracy, Dice, F1 Score, Recall, MAE等等,几乎最常见的指标都可以在里面找到。torchmetrics目前已经包好了80+任务评价指标。TorchMetrics安装也非常简单,只需要...
TorchNLP 提供了丰富的指标工具,以便用户在训练模型时进行评估。例如,我们可以计算 F1 分数: fromtorchnlp.metricsimportf1_score# 假设预测和真实值如下predictions=[1,0,1,1]true_labels=[1,0,0,1]f1=f1_score(predictions,true_labels)print(f'F1 Score:{f1}') ...
print("Loss: ", r['loss'], "\nAccuracy: ", r['accuracy'], "\nF-score: ", f1_score(yt, yp, average='micro')) Loss: 0.29120033979415894 Accuracy: 0.9556179642677307 F-score: 0.9556213017751479 该模型在CPU上训练约10分钟,准确率为95.56%。
F1使用平均米pytorch时,未正确计算torchmetrics的分数我通过使用f1_score.compute().item()解决了这个...