sampler = DistributedSampler(dataset) loader = DataLoader(dataset, sampler=sampler) for epoch in range(start_epoch, n_epochs): sampler.set_epoch(epoch) # 设置epoch 更新种子 train(loader) 2.3 模型分布式封装 将单机模型使用torch.nn.parallel.DistributedDataParallel进行封装 torch.cuda.set_device(local_r...
train_dataset=Dataset(...)train_sampler=DistributedSampler(train_dataset)train_loader=Dataloader(dataset=train_dataet,sampler=train_sampler,shuffle=False)val_set=Dataset()val_loader=Dataloader(dataset=val_set) 对训练数据集做修改。将dataloader的sampler修改为DistributedSampler,这样保证其每个进程采样的数据是...
将dataloader的sampler修改为DistributedSampler,这样保证其每个进程采样的数据是不同的 训练集的dataloader的shuffle只能设置为False,DistributedSampler会进行shuffle,如果dataloader再shuffle的话会打乱次序,导致多进程分配的数据不对 batch_size设置的是每个进程的,因此不需要像dataparalle一样乘以卡数 对验证集可以不做修改,...
model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu]) # Data loading code train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True) train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, num_replicas...
DistributedDataParallel代码示例: python import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, Dataset, DistributedSampler from torch.nn.parallel import DistributedDataParallel as DDP import torch.distributed as dist import argparse class SimpleModel(nn.Mod...
(createModel(), **kwargs) sampler = DistributedSampler(dataset) loader = DataLoader(dataset, sampler=sampler) output = train(model, loader, learning_rate) dist.cleanup()returnoutput distributor = TorchDistributor(num_processes=2, local_mode=False, use_gpu=True) distributor.run(train...
torch.utils.data.DistributedSample: 将数据加载限制为数据集子集的采样器。与torch.nn.parallel.DistributedDataParallel结合使用。 在这种情况下,每个进程都可以将DistributedSampler实例作为DataLoader采样器传递 3 DataLoader torch.utils.data.DataLoader是 PyTorch 数据加载的核心,负责加载数据,同时支持 Map-style 和 Itera...
(createModel(), **kwargs) sampler = DistributedSampler(dataset) loader = DataLoader(dataset, sampler=sampler) output = train(model, loader, learning_rate) dist.cleanup()returnoutput distributor = TorchDistributor(num_processes=2, local_mode=False, use_gpu=True) ...
data.DistributedGroupSampler,它的命名遵循 torch.utils.data.DistributedSampler。该采样器旨在帮助用户构建 M-way 数据并行、N-way 模型并行,使得其就像 DDP 中的 DistributedSampler 一样简单。用户唯一要做的就是设置模型并行组号,然后 DistributedGroupSampler 来确保同一模型并行组中的模块具有相同的训练数据。
4、train_sampler = DistributedSampler(train_dataset) - 多卡训练需要使用特定的sampler,通俗理解为将数据分成若干份,然后分别分配给每个进程,份的数量等于GPU数量。5、评估时,包含local_rank==0的判断 - 目的是无需让每个进程都执行evaluate操作,其中仅一个进程进行即可。6、python -m torch....