所以softmax函数dim 应该取CHW中w, 也就是2, 为了统一方便,取-1最后一维。
argmax函数:torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号,dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index。 例如tensor(2, 3, 4) dim=0,将第一维度去掉,这样结果为tensor(3, 4)。 AI检测代码解析 import torch a=torch.tensor(...
在pytorch中,同样有这样的函数,那就是torch.cat()函数. 先上源码定义:torch.cat(tensors,dim=0,out=None) 第一个参数tensors是你想要连接的若干个张量,按你所传入的顺序进行连接,注意每一个张量需要形状相同,或者更准确的说,进行行连接的张量要求列数相同,进行列连接的张量要求行数相同 第二个参数dim表示维度...
import torch # 创建两个张量 tensor1 = torch.tensor([]) tensor2 = torch.tensor([1, 2]) # 在第一个维度上拼接这两个张量 result = torch.cat((tensor1, tensor2.unsqueeze(0)), dim=0) print(result) torch transpose用法 在PyTorch 中,torch.transpose() 函数用于对张量的维度进行转置。它接受一...
1,gather是不规则的切片提取算子(Gathers values along an axis specified by dim. 在指定维度上根据索引 index 来选取数据)。函数定义如下: torch.gather(input,dim,index,*,sparse_grad=False,out=None)→Tensor 参数解释: +input(Tensor) – the source tensor. +dim(int) – the axis along which to ind...
torch.sum()对输入的tensor数据的某一维度求和,一共两种用法 1.torch.sum(input, dtype=None) 2.torch.sum(input, list: dim, bool: keepdim=False, dtype=None) → Tensor input:输入一个tensor dim:要求和…
dim在torch中表示什么方向? numpy中axis的方向是如何定义的? 1. torch中以index_select为例子 torch.index_select(input, dim, index, out=None) - 功能:在维度dim上,按index索引数据 - 返回值:依index索引数据拼接的张量 - index:要索引的张量 - dim:要索引的维度 - index:要索引数据的序号 代码语言:javas...
softmax(input_tensor, dim=0) print(output_tensor) 输出结果: tensor([0.090031, 0.244728, 0.665241]) 例2:对二维张量进行softmax归一化 import torch import torch.nn.functional as F # 创建一个二维张量 input_tensor = torch.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]) # 对输入张量进行soft...
一、torch.argmax() (1)torch.argmax(input, dim=None, keepdim=False)返回指定维度最大值的序号; (2)dim给定的定义是:the demention to reduce.也就是把dim这个维度的,变成这个维度的最大值的index。 二、栗子 (1)这个例子,tensor(2, 3, 4),因为是dim=1,即将第二维度去掉,变成tenso...关于...
torchdim.ipynb Repository files navigation README Code of conduct BSD-3-Clause license Security Named Tensors using First-class Dimensions in PyTorch -- Zachary DeVito @Zachary_DeVito An implementation of named tensors with the functionality of einsum , batching (vmap, xmap), and tensor indexing...