如果该代码输出“CUDA is not available.”,则表明PyTorch无法访问CUDA设备。 综上所述,如果torch.cuda.device_count()返回0,您应该首先检查CUDA、NVIDIA GPU及其驱动程序是否已正确安装和配置。然后,确保PyTorch版本与CUDA版本兼容,并正确设置了相关的环境变量。如果问题仍然存在,可能需要查看PyTorch或CUDA的官方文档以获...
importtorch# 步骤一:检查可用的GPU设备device_count=torch.cuda.device_count()ifdevice_count>0:print("可用的GPU设备数量:",device_count)else:print("未检测到可用的GPU设备")# 步骤二:设置使用的GPU设备device_index=0torch.cuda.set_device(device_index)# 步骤三:在代码中指定使用的GPU设备device=torch.d...
device_count() 用途:返回系统中可用的 GPU 数量。 torch.cuda.current_device() 用途:返回当前默认的 GPU 设备索引。 torch.cuda.set_device(device) 用途:设置当前默认的 GPU 设备索引。 torch.cuda.get_device_name(device=None) 用途:返回给定设备的名称。 torch.cuda.get_device_properties(device) 用途:...
True为可用,即是gpu版本pytorch print(torch.cuda.get_device_name(0))# 返回GPU型号 print(torch.cuda.device_count())# 返回可以用的cuda(GPU)数量,0代表一个 print(torch.version.cuda)
调试打开,发现torch.cuda.device_count()返回的是 1。而我机器上明明是两张卡。 一脸懵逼。 查阅PyTorch 官网后,发现是使用问题。我在调用 device_count 之前,已经设置过了环境变量CUDA_VISIBLE_DEVICES。 通过在os.environ["CUDA_VISIBLE_DEVICES"]代码之前执行 device_count, 发现返回的是 2。至此,问题已定位。
torch.device('cpu')表示的是中央处理单元(CPU)。 torch.device('cuda:0')表示的是图形处理单元(GPU),其中的数字 0指的是第一个GPU。如果你的系统上有多个GPU,你可以通过改变这个数字来指定不同的GPU,如 cuda:1、cuda:2等。 计算能力: CPU: 通常具有少量的核心(例如4、8或16个核心),但每个核心的时钟速...
🐛 Describe the bug The torch.cuda.device_count function utilizes a LRU cache of size 1, but because it has no arguments, underlying state changes in environment variables can cause an this function to report its cache value instead of th...
基本上,没有人会将大段的C语言代码全部塞入 main() 函数,更好的做法是按照复用率高,耦合性低的...
1.2 CUDA CUDA(Compute Unified Device Architecture),是NVIDIA推出的通用并行计算平台和编程模型。CUDA是在底层API的基础上,封装了一层,使得程序员可以使用C语言来方便的编程。 CUDA还支持C++/Python等更高级的语言编程;此外,NVIDIA还提供了CuDNN、TensorRT、NPP等更高级的库函数。 各代显卡、CUDA、上层库之间的关系 ...