torch.nn.functional.cross_entropy() 的详细介绍 torch.nn.functional.cross_entropy() 是 PyTorch 中用于计算交叉熵损失(Cross-Entropy Loss)的函数。交叉熵损失通常用于分类任务,例如多类别分类问题。1. 交…
defloss_fn(pred,target):pred=pred.reshape(-1)target=target.reshape(-1)critical=nn.functional.binary_cross_entropy_with_logits(pred,target)returncritical 这里使用了binary_cross_entropy_with_logits,该函数自带sigmoid操作,所以网络输出值直接传进来即可,不需要我们自己手动sigmoid。 另外,如果我们的输入值趋近...
先来讲下基本的交叉熵cross_entropy,官网如下:torch.nn.functional.cross_entropy — PyTorch 1.12 documentation torch.nn.functional.cross_entropy(input, target, weight=None, size_average=None, ignore_index=- 100, reduce=None, reduction='mean', label_smoothing=0.0) loss=F.cross_entropy(input, target...
loss = torch.nn.functional.cross_entropy(output, target) importtorchimporttorchvisionimporttorch.nn as nnimporttorch.nn.functional as F#input is of size N x C = 3 x 5input = torch.randn(3, 5, requires_grad=True)#each element in target has to have 0 <= value < Ctarget = torch.tenso...
接着,我们关注 CrossEntropyLoss。在 torch 中,CrossEntropyLoss 接口在 nn module 下的类形式定义,使用时需创建实例。与此相反,cross_entropy 函数位于 nn.functional 中,可直接调用。无论是功能实现还是接口调用方式,CrossEntropyLoss 与 cross_entropy 在最终输出结果上并无区别,均可视为等效。总...
torch.nn.CrossEntropyLoss调用了函数F.cross_entropy,与tf中不同的是,F.cross_entropy执行包含两部分log_softmax和F.nll_losslog_softmax主要用于解决函数overflow和underflow,加快运算速度,提高数据稳定性...
注意,在用PyTorch做分类问题的时候,在网络搭建时(假设全连接层的output是y),在之后加一个 y = torch.nn.functional.log_softmax (y),并在训练时,用torch.nn.functional.nll_loss(y, labels)。这样达到的效果和不用log_softmax层,并用torch.nn.CrossEntropyLoss(y,labels)做损失函数是一模一样的。 import ...
除了使用`torch.nn.CrossEntropyLoss`函数外,还可以手动实现交叉熵损失函数的计算。下面是一个手动计算交叉熵的示例代码: ```python import torch import torch.nn.functional as F #设置随机种子以便结果可复现 #假设有4个样本,每个样本有3个类别 # 模型预测的概率值(未经过 softmax) logits = torch.randn(4,...
🚀 The feature, motivation and pitch It'd be great to have a fused linear and cross-entropy function in PyTorch, for example, torch.nn.functional.linear_cross_entropy. This function acts as a fused linear projection followed by a cross-en...
默认值为0.0,表示不应用标签平滑。 需要注意的是,当使用CrossEntropyLoss时,输入预测应该是对数概率(即,log softmax层的输出),而目标应该是类别索引。 综上所述,PyTorch中的CrossEntropyLoss函数通过其参数提供了灵活性,允许用户根据他们的具体需求和数据集的特点自定义损失计算。