想象一下,一个使用 ATmega328P 微控制器的 Arduino Uno,它使用 8 位运算。要想在 Uno 上运行一个模型,理想情况下模型权重必须存储为 8 位整数(而许多台式计算机和笔记本电脑使用 32 位或 64 位浮点表示)。通过量化模型,权重的存储大小减少为原来的 4 分之一(如 32 位到 8 位值的量化),而对准确度的影响...
这么小的模型可以在使用 2 KB RAM 的 Arduino Uno 上运行——简而言之,你现在可以在一个 5 美元的微控制器上建立这样一个机器学习模型。机器学习正在向两种计算范式分化:以计算为中心的计算和以数据为中心的计算。在以计算为中心的范式中,数据由数据中心的范例进行存储以及分析,而在以数据为中心的范式中,在...
想象一下,一个使用 ATmega328P微控制器的 Arduino Uno,它使用 8位运算。要想在 Uno 上运行一个模型,理想情况下模型权重必须存储为 8 位整数(而许多台式计算机和笔记本电脑使用 32 位或 64 位浮点表示)。通过量化模型,权重的存储大小减少为原来的 4 分之一(如 32 位到 8 位值的量化),而对准确度的影响可...
想象一个使用ATmega328P微控制器的Arduino Uno,它使用8位算法。要在Uno上运行一个模型,理想情况下模型权重必须存储为8位整数值(而许多台式计算机和笔记本电脑使用32位或64位浮点表示)。通过量化模型,权重的存储大小减少了4倍(对于从32位到8位值的量化),并且精度通常会受到忽略的影响(通常约为1–3%)。 llustratio...
假定对于一台Arduino Uno,使用8位数值运算的ATmega328P微控制器。在理想情况下要在Uno上运行模型,不同于许多台式机和笔记本电脑使用32位或64位浮点表示,模型的权重必须以8位整数值存储。通过对模型做量化处理,权重的存储规模将减少到1/4,即从32位量化到8位,而准确率受到的影响很小,通常约1-3%。
Arduino_TensorFlowLite 哈佛_TinyMLx 完成了这些,我们就可以开始这个项目了! 步骤1:使用TensorFlow Lite训练机器学习模型 一般来说,ML工作流将从收集和标记数据集开始开始,然后从头开始设计模型架构。为了时间和简单起见,我们将通过利用一些现成的数据集和预先训练的关键字识别模型来“作弊”,这两个模型都是由Pete Warde...
想象一下,一个使用 ATmega328P 微控制器的 Arduino Uno,它使用 8 位运算。要想在 Uno 上运行一个模型,理想情况下模型权重必须存储为 8 位整数(而许多台式计算机和笔记本电脑使用 32 位或 64 位浮点表示)。通过量化模型,权重的存储大小减少为原来的 4 分之一(如 32 位到 8 位值的量化),而对准确度的影响...
想象一下,一个使用 ATmega328P 微控制器的 Arduino Uno,它使用 8 位运算。要想在 Uno 上运行一个模型,理想情况下模型权重必须存储为 8 位整数(而许多台式计算机和笔记本电脑使用 32 位或 64 位浮点表示)。通过量化模型,权重的存储大小减少为原来的 4 分之一(如 32 位到 8 位值的量化),而对准确度的...
假定对于一台 Arduino Uno,使用 8 位数值运算的 ATmega328P 微控制器。在理想情况下要在 Uno 上运行模型,不同于许多台式机和笔记本电脑使用 32 位或 64 位浮点表示,模型的权重必须以 8 位整数值存储。通过对模型做量化处理,权重的存储规模将减少到 1/4,即从 32 位量化到 8 位,而准确率受到的影响很小,...
通俗地说,UART 允许嵌入式设备(例如 Arduino)通过 TX(发送)和 RX(接收)线将数据发送到另一个 Arduino,如下所示。 举一个具体的例子: Arduino UNO 没有内置的 WiFi,因此不可能做IOT相关的项目。通过了解基本的 UART 串行通信,我能够利用ESP8266/ESP32作为 Arduino UNO 的协处理器,以便从连接到 Arduino...