The volume of this cylinder is432π(cm^3) and the surface area isA(cm^2).a Expressh in terms ofr.b Show thatA=2πr^2 (864π)/r.c Find the value forr for which there is a stationary value ofA.d Determine the magnitude and nature of this stationary value. 相关知识点: 试题来源...
The volume of a cylinder is calculated by ___ the area of the base by the height. A. adding B. subtracting C. multiplying D. dividing 相关知识点: 试题来源: 解析 C。圆柱体体积是底面积乘以高,所以选 C。A 选项 adding 是加,B 选项 subtracting 是减,D 选项 dividing 是除,都不符合求圆...
百度试题 结果1 题目9. Work out the volume of each cylinder. (use r=3.14)a b2.5cm C20mm12cm18cm14 mm 相关知识点: 试题来源: 解析 答案见上 反馈 收藏
A cylinder has a radius of 4 cm and a height of 10 cm. What's the volume of the cylinder? A. 160π cm³ B. 120π cm³ C. 80π cm³ D. 16π cm³ 相关知识点: 试题来源: 解析 A。本题考查圆柱体体积的计算。圆柱体体积等于底面积乘以高,底面积是πr²,所以体积是π×4...
A cylinder has a radius of 3 cm and a height of 10 cm. What is the volume of the cylinder? (Use π≈ 3.14) A. 282.6 cubic cm B. 188.4 cubic cm C. 94.2 cubic cm D. 28.26 cubic cm 相关知识点: 试题来源: 解析 A。此题考查圆柱体体积计算。圆柱体体积 = π×半径²×高,...
试题来源: 解析 A。圆柱体体积 = π×半径²×高,半径为 3cm,高为 5cm 的圆柱体体积为 π×3²×5 = 45π cm³。选项 B 计算错误。选项 C 是π×3² = 9π cm²,是底面积。选项 D 是 3³π = 27π cm³,计算错误。反馈 收藏 ...
Use 3 for π.The height of the cylinder is .The surface area of the cylinder is . 答案 4;72The height of the cylinder is 4822×3=4.The surface area is 2×3×22+2×3×2×4=72相关推荐 1The volume of a cylinder is 48 with a radius of 2. Use 3 for π.The height of the ...
Analyze Find the volume of this right circular cylinder. Dimensions are in inches. (Use 3.14 for m.)10 相关知识点: 试题来源: 解析 31.4 cubic inchesvolume of cylinder =Aren of base* height =nu2h inches (radius is half of dio meter). Height is aiven lo indres. Thus ...
The volume of the cylinder is 2411.52 cubic inches. Example 2:The radius of a cylinder is 5 feet and the height of the cylinder is 10 feet. Find the volume of this cylinder. (Assume the the value of \( \pi \)to be 3.14)
Assume the volume of a can must be \number{1200} cm^3. Use a calculator to graph the function using an appropriate window, then use it to find the radius r and height h that will result in a cylinder with the smallest possible area, while still holding a volume of \number{1200} cm...