而传统的基于条件最大熵原理的方法并不适合这一实际情况,因为条件最大熵原理假设所有的边信息都是可以获得的。 最大因果熵(Principle of Maximum Causal Entropy) 最大熵往往描述的是使用与已知问题约束一致的最少committed的概率分布,是很多统计学领域的基础,包括马科夫随机场分布。但是当边信息(X)存在时(注意:我...
网络最大熵原理 网络释义 1. 最大熵原理 ...国科学院研究生院, 北京 100049) 摘要:最大熵原理(the principle of maximum entropy)起源于信息论和统计力学, 是基于有限 … wenku.baidu.com|基于4个网页 释义: 全部,最大熵原理
1995. "Can the Maximum Entropy Principle Be Explained as a Consistency Re- quirement?" Studies in History and Philosophy of Science Part B 26(3): 223-261.J. Uffink. Can the maximum entropy principle be explained as a consis- tency requirement? Stud. Hist. Phil. Mod. Phys., 26:223,...
Gyllenberg, M., Koski, T.: \Numerical Taxonomy and Principle of Max- imum Entropy", Journal of Classi cation, 13, 1996, 213-229.Gyllenberg, M., Koski, T. (1996) Numerical taxonomy and the principle of maximum entropy. J. Classification 13: pp. 213-230...
摘要: In this paper, a two-phase evolutionary optimization scheme is proposed for obtaining optimal structure of fuzzy control rules and their associated weights, using evolutionary programming (EP) and the principle of maximum entropy (PME) based on the previous research [1]....
最大熵原理(The Maximum Entropy Principle) https://wanghuaishi.wordpress.com/2017/02/21/%E5%9B%BE%E8%A7%A3%E6%9C%80%E5%A4%A7%E7%86%B5%E5%8E%9F%E7%90%86%EF%BC%88the-maximum-entropy-principle%EF%BC%89/ 这个“熵“并不是指热力学上熵的概念,而是由信息论男神克劳德·艾尔伍德·香农...
The principle of maximum entropy is a general method to assign values to probability distributions on the basis of partial information. This principle, introduced by Jaynes in 1957, forms an extension of the classical principle of insufficient reason. It has been further generalized, both in mathema...
最大熵原理/最大熵原则/最大熵模型(the maximum entropy principle,MEP),最大熵原理是在1957年由E.T.Jaynes提出的,其主要思想是,在只掌握关于未知分布的部分知识时,应该选取符合这些知识但熵值最大的概率分布。因为在这种情况下,符合已知知识的概率分布可能不止一个。
最大熵原理是在1957 年由E.T.Jaynes 提出的,其主要思想是,在只掌握关于未知分布的部分知识时,应该选取符合这些知识但熵值最大的概率分布。因为在这种情况下,符合已知知识的概率分布可能不止一个。我们知道,熵定义的实际上是一个随机变量的不确定性,熵最大的时候,说明随机变量最不确定,换句话说,也就是随机变量最...
The properties and problems in parameter estimation of the extreme-value type 1 (EV1) distribution are discussed and then further examined using the principle of maximum entropy. This emerging concept points to a unique technique for the parameter estimation and provides the necessary justification for...