Determine the number of ordered pairs (x,y) of positive integers satisfying the following equation: 求满足下式的正整数序偶对(x,y)的数目: x√y+y√x−√2007x−√2007y+√2007xy=2007.相关知识点: 试题来源: 解析 6. Rewrite the equation a
38. we manipulate the equation to fortnxy tx-y-1=9 or(x-1)Cy+1)=91 sincexand ymustbe positive $$ andqerastnave $$ $$\left\{ \begin{matrix} x-1=1 \\ y+1=91 \end{matrix} \right.\left\{ \begin{matrix} x-1=91 \\ y+1=1 \end{matrix} \right.\left\{ \begin{matrix...
If n is a factor of 72, such that xy = n then number of ordered pairs (x, y) are :- (wherex,y≠N) View Solution Find the number of solutions in ordered paris of positive integers (x,y) of the equation1x+1y=1nwhere n is positive integer. ...
So we have one ordered pair: (−1/4,−1/4). Case 2: u=1, v=−12x+y=1andxy=−12⟹x=−12ySubstituting x in the first equation:−12y+y=1⟹12y=1⟹y=2,x=−1So we have another ordered pair: (−1,2). Final ResultThus, the number of ordered pairs (x,y)...
参考资料:http://amc.maa.org/mathclub/5-0,problems/H-problems/H-web,ia/2002web/ha02-24-ia.shtml
结果一 题目 Find the number of ordered pairs of real numbers (a,b) such that (a+bi)2002=a−bi.( )A.1001B.1002C.2001D.2002E.2004 答案 E相关推荐 1Find the number of ordered pairs of real numbers (a,b) such that (a+bi)2002=a−bi.( )A.1001B.1002C.2001D.2002E.2004 ...
结果1 题目 18. The number of ordered pairs of positive integers(m,n),such that$$ \frac { 1 } { m } + \frac { 1 } { n } = \frac { 1 } { 1 5 } , $$, is E(A)10 (B)2 (C)4(D)8 (E)9 相关知识点: 试题来源: 解析 答案见上 反馈 收藏 ...
doi:10.1016/0012-365X(92)90131-XMarcel ErnéElsevier BVDiscrete MathematicsM. ERN¢:,The number of partially ordered sets with more points than incomparable pairs, Discrete Math. 105 (1992), 49-60.M. Ern´e: The number of partially ordered sets with more points than incomparable pairs. ...
If |x + y| = |x - y| then the number of ordered pairs of (x , y) which satisfy the given condition is :
This gives us a total of 9 ordered pairs. Thus, S(6)=9. Part (ii): Show that if n is prime, then S(n) = 3 1. Start with the equation: For a prime number n, we have: 1x+1y=1n 2. Rearranging the equation: As before, we can rewrite it as: xy−nx−ny=0 Adding n2...