= aSum (π xi)+ bSum ( π), Sum( π) = 1,所以 Sumaxi = aSxi = aE[X] + b(b) ProofVar(X) = E([X-E(X)]2= E(X2)-2XE(X) + E(X)2, x=E(x)= E(X2) -2E(X)E(X) + E(X)2= E(X2)-E(X)2(c)Proof: Var[aX+b]= E([(aX + b)- E(aX + b)]2)=...
In many instances, the probability density function (pdf) of a function of a random variable is obtained from the pdf of the random variable, the inverse function and the derivative of this inverse. The formula tends to be memorized rather than fully understood. This article describes how we ...
(I) M'(t)=6(1-2t)^(-4) Alternative M'(0)=6 so E(X)=6 M_X(t)=1+6t+ ... M'(t)=48(1-2t)^(-5)[M'(0)=48 E(X)=6 Th tefoteVar(X)=48-6^2 M_X(t)=1+6t^(11)+24t^2+ . =12 Thereforevar(X)=2*24-6^2=12 (II) Y=X_1+X_2:M_r(t)=(1-2t)^(-...
The limit of a function of a variableThe definition of the limit of a function of a variableSection 2:Theorems on limitsLimits of polynomialsCENTRAL TO CALCULUS is the value of the slope of a line, , but when the terms approach . Evaluating that rate of change under those vanishing ...
[translate] aPCR-Induced Sequence Alterations Hamper the Typing of [Prehistoric Bone Samples for Diagnostic Achondroplasia Mutations 正在翻译,请等待...[translate] aA frequency response is a function of the variable 频率响应是可变物的作用[translate]...
aA frequency response is a function of the variable s 频率响应是易变的s的作用[translate]
【题目】T h e cumulativ e distribution function of a ran dom variabl e x is given by F(x)=1-$$ e ^ { - \lambd a x } $$Writ e th e modal valu e of x 答案 【解析】 $$ M o d e = 0 $$相关推荐 1【题目】T h e cumulativ e distribution function of a ran dom varia...
1 今天在使用amos进行路径分析的时候遇到的一个问题,看下面的截图,提示我“The observed variable,e1,is represented by an ellipse in the path diagram”,翻译成中文就是观测变量e1在路径方程中用椭圆表示,我看了又看都没找到问题,最有一个朋友告诉我原来是变量名重复了,我们看看具体的解决方法:我们找到...
C++中 function returns the address of the local variable 的原因 函数返回局部变量的地址错误通常发生在使用函数和局部变量时。 正如我们无法访问其定义范围之外的局部变量一样,我们也无法在该范围之外访问其地址。 像这样看。 当您尝试访问定义范围之外的局部变量时,您会收到“variable not declared in this scope...
The probability density function of a random variable X is f(X)(a)show that E(aX+b)=aE(X)+b(b)Var(aX+b)=a^2Var(X)(c)Var(X)=E(X^2)-{E(X)}^2