If the function f(x) is increasing on the interval (a,b), then for any x₁,x₂ in (a,b) where x₁ A. f(x₁)>f(x₂) B. f(x₁)=f(x₂) C. f(x₁) D. The relationship cannot be determined. 相关知识点: ...
If the function f(x) is an increasing function on the interval [a,b], then which of the following must be true? A. f(a) B. f(a)>f(b) C. f(a)=f(b) D. None of the above 相关知识点: 试题来源: 解析 A。因为函数在区间 [a,b] 上是增函数,所以当 a ...
题目The function f(x)=\int _{0}^{x}\sin t \d t; 0\ ≤q\ x\ ≤q\ 2π is increasing on the interval( ) A. [0,2π ] B. [π ,2π ] C. [0, (π )2] D. [0,π ] 相关知识点: 试题来源: 解析 D 反馈 收藏
If the function f(x) = x + 1/x is increasing on the interval (a, +∞), then the value of a is ( ) A. 1 B. C. -1 D. -2 相关知识点: 试题来源: 解析 A。对 f(x) 求导得 f'(x) = 1 - 1/x^2,令 f'(x) > 0 ,解得 x > 1 或 x < -1 ,所以函数在 (1, +...
The function f(x)=log(1+x)−2x2+x is increasing on A(−1,∞) B(−∞,0) C(−∞,∞) DNone of theseSubmit Question 3 - Select One The function log(1+x)−2xx+2 is increasing in the interval: A(−∞,0] B(−1,∞) C(−∞,1] DNone of theseSubmitConsider...
- The function is decreasing on the intervals (−∞,−1) and (2,∞).- The function is increasing on the interval (−1,2). Thus, the final answer is: - Increasing on: (−1,2)- Decreasing on: (−∞,−1)∪(2,∞)Updated...
If a functiong is decreasing on the interval (−∞,a), increasing on the interval (a,∞), and g(a)=b, thenA:bis a minimum valueB:bis a maximum valueC:ais a maximum valueD:ais a minimum value 相关知识点: 试题来源: 解析 A None ...
百度试题 结果1 题目Determine the interval(s) on which the function is increasing. (Enter your answer using interval notation.) 相关知识点: 试题来源: 解析 $(-1,1)$ and $(2,4)$ 反馈 收藏
for all x in an interval, then the function is increasing on the interval. ... It is generally true that if a function is continuous on the closed interval [a,b] and increasing on the open interval (a,b) then it must be increasing on the closed interval [a,b] as well.Are...
The function is increasing on ◻ .(Type your answer in interval notation. Type integers or simplified fractions. Use a comma to separate answers as needed.)B. The function is never increasing.Select the correct choice below Find the interva...